Advertisement

Modeling of Brine Migration in Halite

  • H. Cheung
  • M. E. Fuller
  • E. G. Gaffney
Part of the Advances in Nuclear Science & Technology book series (ANST)

Abstract

When canisters filled with radwastes are emplaced in a deep bedded salt repository the heat produced by the decaying waste will cause high temperatures and moderate thermal gradients to develop in the salt. The temperature and thermal gradient may be sufficient to cause the brine inclusions present to migrate towards the canister. The larger inclusions of SALT VAULT (1) were shown to migrate readily toward the emplacement hole while the very small ones were either unable to migrate or migrated very small distances (2). The rate of droplet migration can be limited either by ion diffusion through the liquid droplet or by the kinetics of ion removal from or deposition on the facets of the droplets. When the diffusivity and solubility of the solid in the liquid are large, the kinetic processes at the solid-liquid interface control the overall droplet velocity.

Keywords

Thermal Gradient Liquid Droplet Spend Fuel Surface Tension Effect Soret Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Bradshaw and W. C. McClain, Project Salt Vault: A Demonstration of High Activity Waste in Underground Salt Mines ORNL-4555 (1971).Google Scholar
  2. 2.
    K. A. Holdoway, “Behavior of Fluid Inclusions in Salt During Heating and Irradiation,” Fourth Symposium on Salt Vol. 1 (A. H. Coogan, ed., Northern Ohio Geol. Soc., Clevelandt1974)Google Scholar
  3. 3.
    D. Elwell and H. J. Scheel, Crystal Growth from High-Temperature Solutions ( Academic Press, NY 1975 ).Google Scholar
  4. 4.
    W. J. Moore, Physical Chemistry ( 4th Ed., Prentice-Hall, Inc., Englewood Cliffs, NJ, 1972 ).Google Scholar
  5. 5.
    D. G. Miller, Lawrence Livermore Laboratory, Livermore, CA (private communication).Google Scholar
  6. 6.
    P. Hoekstra, T. E. Osterkamp and W. F. Weeks, “The Migration of Liquid Inclusions in Single Ice Crystals,” J. Geophys. Res. 70, 2180 (1966).Google Scholar
  7. 7.
    G. H. Jenks, Effects of Temperature, Temperature Gradients, Stress and Irradiation on Migration of Brine Inclusions in a Salt Repository ORNL-5526, (1979).Google Scholar
  8. 8.
    W. R. Gambill, “Seven Answers from One Chart - Physical Properties of Water, ” Chem. Eng., 139 (1959).Google Scholar
  9. 9.
    W. Unterberg, “Thermal Properties of Salt Solutions,” Brit. Chem. Eng. 11, 494 (1966).Google Scholar
  10. 10.
    W. R. Wilcox, “Removing Inclusions from Crystals by Gradient Techniques,” Ind. and Eng. Chem. 60, 13 (1968).Google Scholar
  11. 11.
    T. R. Anthony and H. E. Cline, “Thermal Migration of Liquid Droplets Through Solids,” J. Appl. Phys. 42, 3380 (1971).CrossRefGoogle Scholar
  12. 12.
    T. R. Anthony and H. E. Cline, “The Kinetics of Droplet Migration in Solids in an Accelerational Field,” Phil. Mag. 22, 893 (1970).Google Scholar
  13. 13.
    T. R. Anthony and H. E. Cline, “The Interaction of Liquid Droplets with a Grain Boundary in Large Accelerational Fields,” Phil. Mag. 24, 695 (1971).CrossRefGoogle Scholar
  14. 14.
    H. E. Cline and T. R. Anthony, “The Thermomigration of Liquid Droplets Through Grain Boundaries in Solids, ” Acta Metall. 19, 491 (1971).CrossRefGoogle Scholar
  15. 15.
    H. E. Cline and T. R. Anthony, “The Shape Relaxation of Liquid Droplets in Solids, ” Acta Metall. 19, 175 (1971).CrossRefGoogle Scholar
  16. 16.
    T. R. Anthony and H. E. Cline, Acta Metall. 20, 247 (1972).CrossRefGoogle Scholar
  17. 17.
    T. R. Anthony and H. E. Cline, “The Stability of Migrating Droplets in Solids,” Acta Metall. 21, 117 (1973).CrossRefGoogle Scholar
  18. 18.
    H. E. Cline and T. R. Anthony, “Effects of the Magnitude and Crystallographic Direction of a Thermal Gradient on Droplet Migration in Solids,” J. Appl. Phys. 43, 10 (1972).CrossRefGoogle Scholar
  19. 19.
    T. J. Altenbach, Interim Report on Nuclear Waste Depository Thermal Analysis LLL, UCID-17865, 25 July (1978).Google Scholar
  20. 20.
    G. D. Duckworth and M. E. Fuller, BRINE-A Computer Program for Brine Migration LLL (in press).Google Scholar
  21. 21.
    J. Schott, “Sur la Mesure des Coefficients de Soret par la Méthode Thermogravitationnelle,” Compt. Rend. Acad. Sci. Paris, Series C 276, 459 (1972).Google Scholar
  22. 22.
    L. G. Longsworth, “The Temperature Dependence of the Soret Coefficient of Aqueous Potassium Chloride,” J. Phys. Chem. 61, 1557 (1957).CrossRefGoogle Scholar
  23. 23.
    R. L. Bradshaw and F. Sanchez, “Migration of Brine Cavities in Rock Salt,” J. Geophys. Res. 74, 4209–4212 (1969).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • H. Cheung
    • 1
  • M. E. Fuller
    • 2
  • E. G. Gaffney
    • 3
  1. 1.Lawrence Livermore LaboratoryLivermoreUSA
  2. 2.California State UniversityHaywardUSA
  3. 3.Pacifica TechnologyDel MarUSA

Personalised recommendations