Technical Feasibility of Krypton-85 Storage in Sodalite

  • R. W. Benedict
  • A. B. Christensen
  • J. A. Del Debbio
  • J. H. Keller
  • D. A. Knecht
Part of the Advances in Nuclear Science & Technology book series (ANST)


Federal regulations limit the release to the environment of krypton-85 produced by nuclear fission in commercial electric power generation systems (1). These regulations apply to nuclear fuels irradiated after January 1, 1983 (1). To meet the EPA regulation, the 85Kr produced must be collected and stored for sufficient time to allow radioactive decay to reach a level that will allow release consistent with the regulations (2,3). This paper presents experimental results and analyses to demonstrate the technical feasibility of encapsulation in zeolites to immobilize krypton-85 for safe, long term storage (4).


Leakage Rate Radioactive Decay Waste Form Tritiated Water Leakage Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Environmental Radiation Protection Standards for Nuclear Power Operation,“ Federal Register42(9) Part VII, 2858 (1977).Google Scholar
  2. 2.
    D. A. Knecht and R. A. Brown, “Strategy Analysis for Krypton-85 Waste Management,” Trans. ANS (To be published in 1979 ).Google Scholar
  3. 3.
    Alternatives for Managing Wastes from Reactors and Post-Fission Operations in the LWR Fuel Cycle, ERDA-76–43, Chapt. 14.1, Vol. 2, 14.1–14.7, NTIS, Springfield, VA (1976).Google Scholar
  4. 4.
    R. W. Benedict, Technical and Economic Feasibility of Zeolite Encapsulating for Krypton-85 Storage, ENICO-1011, Idaho National Engineering Laboratory (1979).Google Scholar
  5. 5.
    R. M. Barrer and D. E. W. Vaughan, “Trapping of Inert Gases in Sodalite and Cancrinite Crystals,” J. Phys. Chem. Solids 32, 731–743 (1971).CrossRefGoogle Scholar
  6. 6.
    D. E. W. Vaughan, Encapsulation of Rare Gases (PhD. Thesis, Imperial College, London 1967 ).Google Scholar
  7. 7.
    R. A. Brown, M. Hoza and D. A. Knecht, “85Kr Storage by Zeolite Encapsulation,” Proc. 14th ERDA Air Clean. Conf., CONF-760822 1, 118–131, NTIS, Springfield, VA (1977).Google Scholar
  8. 8.
    S. Brunauer, The Adsorption of Gases and Vapors, ( Princeton University Press, Princeton 1943 ).Google Scholar
  9. 9.
    J. Crank, The Mathematics of Diffusion, ( Clarendon Press, Oxford 1975 ).Google Scholar
  10. 10.
    H. S. Carslow and J. C. Jaeger, Conduction of Heat in Solids, ( Clarendon Press, Oxford 1959 ).Google Scholar
  11. 11.
    R. M. Barrer, Diffusion In and Through Solids, (Cambridge University Press, Cambridge 1941; Xerox University Microfilms, Ann Arbor, MI 1975 ).Google Scholar
  12. 12.
    D. M. Ruthven, “Diffusion in Molecular Sieves. A Review of Recent Developments,” Molecular Sieves II (ACS Symposium Ser. 40, American Chemical Society, Washington, D. C. 320–333, 1977 ).Google Scholar
  13. 13.
    N. E. Bibler, Radiolytic Gas Production from Tritiated Water Sorbed on Molecular Sieves, DPST-77–375, Savannah River Laboratories 1977 ).Google Scholar
  14. 14.
    Management of Commercially Generated Radioactive Waste Draft Environmental Impact Statement, DOE/EIS-0046-D, NTIS, Springfield, VA 1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • R. W. Benedict
    • 1
  • A. B. Christensen
    • 1
  • J. A. Del Debbio
    • 1
  • J. H. Keller
    • 1
  • D. A. Knecht
    • 1
  1. 1.Exxon Nuclear Idaho Company, IncIdaho FallsUSA

Personalised recommendations