Advertisement

Low Temperature Ceramic Waste Form: Characterization of Monazite Cement Composites

  • D. M. Roy
  • B. E. Scheetz
  • L. D. Wakeley
  • S. D. Atkinson
Part of the Advances in Nuclear Science & Technology book series (ANST)

Abstract

Central to the concept of geologic waste isolation is the design of a stable radioactive waste form. This paper describes research on an alternative low-temperature ceramic waste form. The concept is to utilize modified calcium silicate, aluminate and other cements as matrix solidification utilizing a hydration bonding or other low temperature bonding mechanism. Previous workers have shown that conventional cements are suitable for solidifying a variety of wastes (1). Advantages of cement-based solidification include relative ease of processing (2) and potentially low cost; indeed, intermediate level wastes have been incorporated in cementitious grouts at ORNL for a number of years (3).

Keywords

Hydration Product Cementitious Matrix Waste Form Cement Sample American Petroleum Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Roy, Proc. Conf. on High Level Radioactive Solid Waste Forms, U.S. Nuclear Regulatory Commission, Dec. 18–21, Denver, CO, NUREG/CP-0004 (Leslie A. Casey, ed.; 1978 ).Google Scholar
  2. 2.
    J. A. Stone,Evaluation of Concrete as a Matrix for Solidification of Savannah River Plant Waste, DP-1448, June (1977).Google Scholar
  3. 3.
    J. G. Moore and E. W. McDaniel, Cerm. Bull. 57, 324 (1978).Google Scholar
  4. 4.
    D. M. Roy and G. R. Gouda, Hot-Pressed Cement in Radioactive Waste Mangement, Report to Battelle Pacific Northwest Laboratories, BSA Subcontract 841, August (1974).Google Scholar
  5. 5.
    D. M. Roy and G. R. Gouda, Nucl. Tech. 40, 214–219 (1978).Google Scholar
  6. 6.
    S. O. Oyefesobi and D. M. Roy, Cem. Concr. Res. 7, 95 (1977).CrossRefGoogle Scholar
  7. 7.
    G. J. McCarthy, Trans. Am. Nucl. Soc. 23, 168–169 (1976).Google Scholar
  8. 8.
    D. M. Roy, B. E. Scheetz, M. W. Grutzeck, A. K. Sarkar and S. D. Atkinson, Proc. Intl. Symp. Ceramics in Nuclear Waste Management, (T. D. Chikalla and J. E. Mendel, ed.; Nucl. Div. Am. Ceramic Soc. and U.S.D.O.E., April 30-May 2, 1979a ).Google Scholar
  9. 9.
    G. J. McCarthy, W. B. White, S. Komarneni, B. E. Scheetz, W. P. Freeborn and D. K. Smith, Proc. Intl. Symp. Ceramics in Nuclear Waste Management (T. D. Chikalla and J. E. Mendel, ed.; Nucl. Div., Am. Ceramic Soc. and U.S.D.O.E., April 30-May 2, 1979a ).Google Scholar
  10. 10.
    C. A. Langton, M. W. Grutzeck and D. M. Roy, Am. Ceramic Soc. Bull. 57 (3), 324 (1978).Google Scholar
  11. 11.
    D. M. Roy, E. L. White, C. A. Langton and M. W. Grutzeck, Proc. 1979 SPE Intl. Symp. Oilfield and Geothermal Chemistry, Houston, TX, 153–161, January (1979b).Google Scholar
  12. 12.
    G. J. McCarthy, W. B. White and D. E. Pfoertsch, Mat. Res. Bull. 13, 1239–1245 (1978).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • D. M. Roy
    • 1
  • B. E. Scheetz
    • 1
  • L. D. Wakeley
    • 1
  • S. D. Atkinson
    • 1
  1. 1.Materials Research LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations