Crystal Chemistry and Phase Relations in the Synthetic Minerals of Ceramic Waste Forms: I. Fluorite and Monazite Structure Phases

  • Gregory J. McCarthy
  • John G. Pepin
  • Dennis D. Davis
Part of the Advances in Nuclear Science & Technology book series (ANST)


McCarthy (1–4) has suggested that synthetic minerals of the fluorite and monazite types are potentially ideal hosts for the lanthanide*-actinide** elements in nuclear wastes. He has synthesized numerous compositions of these structure types relevant to nuclear waste chemistries (1–5). Their geologic stability, radiation stability and high solid solution capacity for actinides have been previously discussed (1–10). The Ln and An elements are very important constituents of high level nuclear wastes (HLW) and transuranic wastes (TRU), and thus are receiving high priority consideration in the design of ceramic nuclear waste forms. The oxides of the Ln’s and An’s can constitute more than 50 weight percent (wt%) of some HLW formulations. Also included among the actinides are long-lived hazardous radionuclides such as Np-237, Pu-238 and Am-241. We discuss here crystal chemistry and recently determined phase relations data on synthetic fluorites and monazites in the context of designing synthetic minerals for HLW ceramics.


Phase Relation Nuclear Waste Fluorite Structure Waste Form Nuclear Waste Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. J. McCarthy, Solid State Chemical Aspects of Radioactive Waste Disposal, Final Report, NSF Contract GK-27781, 32, The Pennsylvania State University, (1973).Google Scholar
  2. 2.
    G. J. McCarthy, “Atomic Level Isolation,” Quarterly Progress Report, Waste Fixation Program, Jan.-March, DOE Report BNWL-1826, Pacific Northwest Laboratory, 43 (J. L. McElroy, ed., 1974 ).Google Scholar
  3. 3.
    G.J. McCarthy, Nucl. Technol. 32, 92-104 (1977).Google Scholar
  4. 4.
    G. J. McCarthy, W. B. White and D. E. Pfoertsch, Mat. Res. Bull. 13, 1239-1245 (1978).CrossRefGoogle Scholar
  5. 5.
    G. J. McCarthy and M.T. Davidson, Am. Ceram. Soc. Bull. 54, 782786 (1975).Google Scholar
  6. 6.
    G. J. McCarthy, Management of Commercially Generated Radioactive Waste, Sect. 3.2 and Appendix P, DOE-EIS-0046-D, April (1979).Google Scholar
  7. 7.
    R. C. Ewing, High Level Radioactive Solid Waste Forms, NUREG/CP0005, 623-649, Dec. (1978).Google Scholar
  8. 8.
    R. C. Ewing, Ceramics in Nuclear Waste Management, CONF-790420, 305-309, DOE Tech. Info. Cr. (1979).Google Scholar
  9. 9.
    G. J. McCarthy, J. G. Pepin, D. E. Pfoertsch and D. R. Clarke, Ceramics in Nuclear Waste Management, CONF-790420, 315-320, DOE Tech. Info. Cr. (1979).Google Scholar
  10. 10.
    G. J. McCarthy, J. G. Pepin and D. E. Clarke, The Rare Earths in Modern Science and Technology, 2, (G. J. McCarthy, ed., Plenum Press, New York, in press).Google Scholar
  11. 11.
    R. D. Shannon, Acta Cryst A32, 751 (1976).CrossRefGoogle Scholar
  12. 12.
    V. M. Goldschmidt, J. Chem. Soc., 655-672 (1937).Google Scholar
  13. 13.
    O.Muller and R. Roy, The Major Ternary Structural Families, ( Springer-Verlag, New York, 1974 ).Google Scholar
  14. 14.
    R. E. Isaacson and L. E. Brownell, Management of Radioactive Wastes from Fuel Reprocessing, OECD Proceedings, Paris, 953-986 (1972).Google Scholar
  15. 15.
    S. Forberg and T. Westermark, Scientific Basis for Nuclear Waste Management, 1, 201-206 ( G. J. McCarthy, ed., Plenum Press, New York, 1979 ).CrossRefGoogle Scholar
  16. 16.
    A. E. Ringwood, Nature 278, 219-223 (1979).CrossRefGoogle Scholar
  17. 17.
    R. Roy, High Level Radioactive Solid Waste Forms, NUREG/CP-0005, 353-356, Dec. (1978).Google Scholar
  18. 18.
    J. M. Rusin, Multibarrier Waste Forms, Part I: Development, DOE Report PNL-2668-2013;1, Pacific Northwest Laboratory (1978).Google Scholar
  19. 19.
    J. M. Rusin (Pacific Northwest Lab.), private communication.Google Scholar
  20. 20.
    G. J. McCarthy, Nucl. Techn. 44, 451-452 (1979).Google Scholar
  21. 21.
    D. Langmuir, Geochim. Cosmochim. Acta. 42, 545-569 (1978).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Gregory J. McCarthy
    • 1
  • John G. Pepin
    • 2
  • Dennis D. Davis
    • 2
  1. 1.Departments of Chemistry and GeologyNorth Dakota State UniversityFargoUSA
  2. 2.Materials Research LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations