Long-Term Extrapolation of Laboratory Glass Leaching Data for the Prediction of Fission Product Release Under Actual Groundwater Conditions

  • F. B. Walton
  • W. F. Merritt
Part of the Advances in Nuclear Science & Technology book series (ANST)


Release and migration of 90Sr and 137Cs from nepheline syenite­based glass buried since 1960 below the water table in sandy soil at Chalk River have been predicted by models using laboratory glass leaching data. Model predications of 90Sr release and migration show good agreement with field measurements. 137Cs concentration profiles in the soil suggest that a simple equilibrium ion exchange model is inadequate to predict 137Cs migration under present test conditions. Soil matrix support of a friable, corrosion-product layer is believed to be largely responsible for observed glass leach rates of the order of 8 x 10−14kg/m2.s after exposure to groundwater for 17 years.


Fission Product Waste Form Leach Rate Glass Block Nuclear Waste Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. F. Merritt, Canad. J. Chem. 36, 425 (1958).CrossRefGoogle Scholar
  2. 2.
    I. Neretnieks, KBS-30 (1977).Google Scholar
  3. 3.
    R. J. M. DeWiest, Flow Through Porous Media (Academic Press, 201-214, 1969 ).Google Scholar
  4. 4.
    D. R. F. Harleman, P. F. Mehlhorn and R. R. Rumer, J. Hydraulic Div., Am. Soc. Civil Engrs. 89, 67 (1963).Google Scholar
  5. 5.
    E. J. Evans, CRER-792 (1958).Google Scholar
  6. 6.
    D. W. Rhodes and J. L. Nelson, HW-54721 (1957).Google Scholar
  7. 7.
    R. E. Jackson, K. J. Inch, R. J. Patterson, K. Lyon, T. Spoel, W. F. Merritt and B. A. Risto, “Adsorption of Radionuclides in an Aluvial-Sand Aquifer: Measurement of the Distribution Coefficients KdSr and Ka Csand Identification of Mineral Absorb-ents,” presented at ACS Division of Environmental Chemistry, April 6 (1979).Google Scholar
  8. 8.
    A. R. Bancroft, CEI-109 (1960).Google Scholar
  9. 9.
    A. R. Bancroft and J. D. Bancroft, Atomic Energy of Canada Limited Report, AECL-718 (1958).Google Scholar
  10. 10.
    G. G. Strathdee, N. S. McIntyre and P. Taylor, Paper No. 51-SI-79, International Symposium on Ceramics in Nuclear Waste Management, American Ceramic Soc., Cincinnati, Ohio, U.S.A., May 2 (1979).Google Scholar
  11. 11.
    J. D. Chen, 23rd ORNL Conference on Analytical Chemistry in Energy Technology.Google Scholar
  12. 12.
    L. H. Johnson, private communication.Google Scholar
  13. 13.
    J. H. Westsik, Jr., and R. P. Turcotte, PNL-2759 (1978).Google Scholar
  14. 14.
    W. F. Merritt and P. J. Parsons, Health Physics 10, 655 (1964).CrossRefGoogle Scholar
  15. 15.
    W. F. Merritt, Atomic Energy of Canada Limited Report, AECL-5317 (1976).Google Scholar
  16. 16.
    P. J. Parsons, Atomic Energy of Canada Limited Report, AECL-1325 (1961).Google Scholar
  17. 17.
    T. T. Vandergraaf, private communication.Google Scholar
  18. 18.
    G. G. Eichholz, T. F. Craft and A. N. Galli, Geochim. et Cosmochim. Acta 31, 737 (1967).Google Scholar
  19. 19.
    P. Magno, T. Reavey and J. Apidianakis, BRH-NERHL-70-2 (1970).Google Scholar
  20. 20.
    B. L. Carlile and B. F. Hajek, BNWL-CC-995 (1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • F. B. Walton
    • 1
  • W. F. Merritt
    • 2
  1. 1.Atomic Energy of Canada LimitedWhiteshell Nuclear Research EstablishmentPinawaCanada
  2. 2.Chalk River Nuclear LaboratoriesChalk RiverCanada

Personalised recommendations