Atomic Displacements and Radiation Damage in Glasses Incorporating HLW

  • M. Antonini
  • P. Camagni
  • F. Lanza
  • A. Manara
Part of the Advances in Nuclear Science & Technology book series (ANST)

Abstract

Recent data of radiation effects in borosilicate glasses and amorphous SiO2 are presented and discussed in terms of atomic displacements produced by direct nuclear collisions and ionization damage produced by interactions of the bombarding particles with the bonding electrons. It is found that density changes and stored energy can properly be represented as depending on the calculated relative number of displaced atoms. Conversely, the comparison of optical absorption spectra of vitreous SiO2 specimens irradiated by high energy heavy ions and electrons indicates that in some cases it might be of relevance to evaluate the yield of ionization damage, basically related to the total amount of energy dissipated in the glass matrix.

Keywords

SiO2 Europe Compaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Lanza, A. Manara and F. Van Rutten, Simulation Possibilities of Radiation Effects in Glasses used for Conditioning High Activity Waste, EUR 5560 e (1976).Google Scholar
  2. 2.
    P. Le Clerc, “Action de Rayonnements sur les Verres,” Bull. Inf. Sci. Techn., Commissariat a l’Energie Atomique 98, 7 (1965).Google Scholar
  3. 3.
    F. P. Roberts, G. H. Jenks and C. D. Bopp, Radiation Effects in Solidified High Level Waste, BWL-1944, UC-70 (1976).Google Scholar
  4. 4.
    W. Primak, The Compacted States of Vitreous Silica ( Gordon and Breach, New York, 1975 ).Google Scholar
  5. 5.
    P. W. Tasker, A Semi-Empirical Molecular Orbital Model of Silica: Application to Radiation Compaction, AERE-R 9319, (1978).Google Scholar
  6. 6.
    J. E. Mendell, W. A. Ross, F. P. Roberts, J. B. Katayama, J. H. Westsik, Jr., R. P. Turcotte, J. W. Wald and D. J. Bradley, Annual Report on the Characteristics of High Level Waste Glasses, BNWL-2252, UC-70, 75 (1977).Google Scholar
  7. 7.
    M. Antonini, A. Manara and P. Lensi, “Ion Irradiation and Stored Energy in Vitreous Si02,” The Physics of Si02 and its Interfaces, (S. T. Pantelides, ed., Pergamon, New York, 316, 1978 ).Google Scholar
  8. 8.
    M. Antonini, F. Lanza and A. Manara, “Simulations of Radiation Damage in Glasses,” Proc. Int. Conf. on Ceramics in Nuclear Waste Management, Cincinnati, OH, April 30-May 2 (1979).Google Scholar
  9. 9.
    M. D. Matthews, Calculations of the Depth Distribution of Energy Deposition by Ion Bombardment Using the Computer Program of Manning and Muller (1973), AERE R 7805 (1974).Google Scholar
  10. 10.
    J. W. Corbett, “Electron Radiation Damage in Semiconductors and Metals,” Solid State Physics, Suppl. 7, ( Pergamon, New York, 1964 ).Google Scholar
  11. 11.
    P. W. Tasker and G. Tinivella, private communication.Google Scholar
  12. 12.
    A. Roux, Energie Emmagasinee dans les Oxydes BeO, MgO, Al20 et SiO2 Irradies aux Neutrons, CEA-N-1171 (1969).Google Scholar
  13. 13.
    Y. Bando and K. Ishizka, “Study of the Structure of Silica Glass by High Resolution Electron Microscopy,” Jour. non Cryst. Solids 33, 375 (1979).CrossRefGoogle Scholar
  14. 14.
    F. Lell, N. J. Kreidl and J. R. Hensler, “Radiation Effects in Quartz, Silica and Glasses,” Progr. Ceram. Sci. 4, 1 (1966).Google Scholar
  15. 15.
    E. W. J. Mitchell and E. G. S. Paige, “The Optical Effects of Radiation Induced Atomic Damage in Quartz,” Phil. Mag. 1, 1085 (1956).CrossRefGoogle Scholar
  16. 16.
    W. Arnold, “Ion-Implantation Effects in Non-Crystalline Si02,” I. E.E.E. Trans. Nucl. Sci. NS-20, 220 (1973).Google Scholar
  17. 17.
    A. R. Ruffa, “Model for the E1 Center on Si02,” Phys. Rev. Lett. 25, 650 (1970).CrossRefGoogle Scholar
  18. 18.
    G. N. Greaves, “Intrinsic and Modified Defect States in Silica,” Jour. Non Cryst. Solids 32, 295 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • M. Antonini
    • 2
    • 1
  • P. Camagni
    • 1
  • F. Lanza
    • 1
  • A. Manara
    • 1
  1. 1.Joint Research CentreIspra, VareseItaly
  2. 2.Gruppo Nazionale Struttura della Materia and Istituto di Fisica dell’UniversitaModenaItaly

Personalised recommendations