The Ischemic and Postischemic Effect on the Activities of Cerebral Monoamine Oxidase, Cytochrome Oxidase and Acetylcholinesterase in Mongolian Gerbils

  • D. Mićić
  • K. Abe
  • W. D. Rausch
  • T. Abe
  • M. Spatz


Cerebral ischemia modifies many metabolites and enzymatic systems in the brain. However, little correlation was found between the altered levels of cerebral metabolites and the changes of some enzymatic activities such as cyclic nucleotide-related enzymes and ATPase (22). These investigations suggested that the enzyme activities in the cellular membranes especially the bound ones were more susceptible than the others to ischemia and/or recirculation. A particular sensitivity of the membrane’s properties to the ischemic injury was also implied by the observed synaptosomal decreased uptake and increased release of norepinephrine. Moreover, ischemia was found to depress greatly the activity of tyrosine hydroxylase and the content of biogenic neurotransmitters in the brain. Thus, the depletion of cerebral monoamines occurring in ischemia was accountable by the decreased synthesis and the augmented release of the amines (5, 15–20, 26, 28, 29).


Cerebral Ischemia Monoamine Oxidase Cytochrome Oxidase AChE Activity MONGOLIAN Gerbil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bradford, M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248.PubMedCrossRefGoogle Scholar
  2. 2.
    Davis, J.N. and Carlsson, A. (1973): The effect of hypoxia on monoamine synthesis, levels and metabolism in rat brain. J. Neurochem. 21: 783–790.PubMedCrossRefGoogle Scholar
  3. 3.
    Diez, J.A. and Maderdrut, J.L. (1977): Development of multiple forms of mouse brain monoamine oxidase in vivo and in vitro. Brain Res. 128: 187–192.PubMedCrossRefGoogle Scholar
  4. 4.
    Ellman, G.L., Courtney, K.D., Andres, V., Jr. and Featherstone, R.M. (1961): A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmac. 7: 88–95.Google Scholar
  5. 5.
    Gaudet, R., Welch, K.M.A., Chabi E. and Wang, T.-P. (1978): Effect of transient ischemia on monoamine levels in the cerebral cortex of gerbils. J. Neurochem. 30: 751–757.PubMedCrossRefGoogle Scholar
  6. 6.
    Ginsberg, M.D., Mela, L., Wrobel-Kuhl, K. and Reivich, M. (1977): Mitochondrial metabolism following bilateral cerebral ischemia in the gerbil. Annals Neurol. 1: 519–527.CrossRefGoogle Scholar
  7. 7.
    Hess, H.H. and Pope, A. (1953): Ultramicrospectrophotometric determination of cytochrome oxidase for quantitative histochemistry. J. Biol. Chem. 204: 295–306.PubMedGoogle Scholar
  8. 8.
    Hoff, J.T., Smith, A.L., Hankinson, H.L. and Nielsen, S.L. (1975): Barbiturate protection from cerebral infarction in primates. Stroke 6: 28–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Ito, U., Spatz, M., Walker, J.T., Jr. and Klatzo, I. (1975): Experimental cerebral ischemia in Mongolian gerbils. I. Light microscopic observations. Acta Neuropathol. ( Berl. ) 32: 209–223.Google Scholar
  10. 10.
    Kahn, K. (1972): The natural course of experimental cerebral infarction in the gerbil. Neurology (Minneap.) 22: 510–515.Google Scholar
  11. 11.
    Kleihues, P. and Hossmann, K.-A. (1971): Protein synthesis in the cat brain after prolonged cerebral ischemia. Brain Res. 35: 409–418.PubMedCrossRefGoogle Scholar
  12. 12.
    Krajl, M. (1965): A rapid microfluorimetric determination of monoamine oxidase. Biochem. Pharmacol. 14: 1684–1685.PubMedCrossRefGoogle Scholar
  13. 13.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951): Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275.PubMedGoogle Scholar
  14. 14.
    Micic, D., Klatzo, I. and Spatz, M. (1978): The effect of sodium pentobarbital on some mitochondrial enzymes. J. Neurochem. 30: 1627–1628.PubMedCrossRefGoogle Scholar
  15. 15.
    Mrsulja, B.B., Mrsulja, B.J., Cvejie, V., Djuricie, B.M. and Rogac, LJ. (1978): Alterations of putative neurotransmitters and enzymes during ischemia in gerbil cerebral cortex. J. Neural Transm., Suppl. 14: 23–30.Google Scholar
  16. 16.
    Mrsulja, B.B., Mrsulja, B.J., Spatz, M., Ito, U., Walker, J.T., Jr. and Klatzo, I. (1976): Experimental cerebral ischemia in Mongolian gerbils. IV. Behaviour of biogenic amines. Acta Neuropathol. ( Berl. ) 36: 1–8.Google Scholar
  17. 17.
    Mrsulja, B.B., Mrsulja, B.J., Spatz, M. and Klatzo, I. (1975): Action of cerebral ischemia on decreased levels of 3-methoxy-4-hydroxyphenylethylglycol sulfate, homovanillic acid and 5-hydroxy-indoleacetic acid produced by pargyline. Brain Res. 98: 388–393.PubMedCrossRefGoogle Scholar
  18. 18.
    Mrsulja, B.B., Mrsulja, B.J., Spatz, M. and Klatzo, I. (1976): Brain serotonin after experimental vascular occlusion. Neurology 26: 785–787.PubMedGoogle Scholar
  19. 19.
    Mrsulja, B.B., Mrsulja, B.J., Spatz, M. and Klatzo, I. (1976): Catecholamines in brain ischemia–effects of a-methyl-p-tyrosine and pargyline. Brain Res. 104: 373–378.PubMedCrossRefGoogle Scholar
  20. 20.
    Mrsulja, B.B., Mrsulja, B.J., Spatz, M. and Klatzo, I. (1976): Monoamines in cerebral ischemia in relation to brain edema. In: Dynamics of Brain Edema, H.M. Pappius and W. Feindel (eds.), pp. 187–192, Springer Verlag, Berlin-Heidelberg-New York.CrossRefGoogle Scholar
  21. 21.
    Rodriguez de Lores Arnaiz, G. and De Robertis, E.D.P. (1962): Cholinergic non-cholinergic nerve endings in the rat brain–II subcellular localization of monoamine oxidase and succinate dehydrogenase. J. Neurochem. 9: 503–508.CrossRefGoogle Scholar
  22. 22.
    Schwartz, J.P., Mrsulja, B.B., Mrsulja, B.J., Passonneau, J.V. and Klatzo, I. (1976): Alterations of cyclic nucleotide-related enzymes and of ATPase during unilateral ischemia and recirculation in gerbil cerebral cortex. J. Neurochem. 27: 101–107.Google Scholar
  23. 23.
    Spector, R.G. (1963): Cerebral succinic dehydro-genase, cytochrome oxidase and mono-amine oxidase activity in experimental anoxic-ischaemic brain damage. Br. J. Exp. Pathol. 44: 251–254.PubMedGoogle Scholar
  24. 24.
    Tipton, K.F. and Youdim, M.B.H. (1976): Assay of monoamine oxidase. In: Monoamine Oxidase and its Inhibition, Ciba Foundation Symposium 39 (new series), Elsevier, Amsterdam.Google Scholar
  25. 25.
    Weiner, N. (1960): The distribution of monoamine oxidase and succinic oxidase in brain. J. Neurochem. 6: 79–86.CrossRefGoogle Scholar
  26. 26.
    Welch, K.M.A., Chabi, E., Buckingham, J., Bergin, B., Achar, V.S. and Meyer, J.S. (1977): Catecholamine and 5-hydroxytryptamine levels in ischemic brain. Influence of p-chlorophenylalanine. Stroke 8: 341–346.PubMedCrossRefGoogle Scholar
  27. 27.
    Whittaker, V.P. and Baker, I.A. (1972): The sub-cellular fractionation of brain tissue with special reference to the preparation of synaptosomes and their component organelles. In: Methods in Neurochemistry, Vol. II, pp. 2–52, F. Ranier (ed.), Dekker, Inc., New York.Google Scholar
  28. 28.
    Wurtman, R.J. and Zervas, N.T. (1974): Monoamine neurotransmitters and the pathophysiology of stroke and central nervous system trauma. J. Neurosurg. 40: 34–36.PubMedCrossRefGoogle Scholar
  29. 29.
    Zervas, N.T., Hori, H., Negora, M., Wurtman, R.J., Larin, F. and Lavyne, M.H. (1974): Reduction in brain dopamine following experimental cerebral ischemia. Nature 247: 283–284.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • D. Mićić
    • 1
  • K. Abe
    • 1
  • W. D. Rausch
    • 1
  • T. Abe
    • 1
  • M. Spatz
    • 1
  1. 1.Laboratory of Neuropathology and Neuroanatomical Sciences National Institute of Neurological and Communicative Disorders and StrokeNational Institutes of HealthBethesdaUSA

Personalised recommendations