Phylogenetic Aspects of the Sensory Neurons of the Wall of the Diencephalon

  • I. Vigh-Teichmann
  • B. Vigh
  • P. Rohlich
  • R. Olsson


Physiological investigations suggest the presence of light receptors, thermoreceptors, as well as sodium and glucose receptors in the wall of the diencephalon (22). Morphological data likewise indicate the occurrence of sensory cells in the hypothalamus (12); for instance, the so-called liquor-contacting neurons (13, 14, 19) and the coronet cells of the vascular sac of fishes (16). The photoreceptor cells of the retina and the similarly built pinealocytes develop from the diencephalon as well.


Outer Segment Photoreceptor Cell Pineal Organ Preoptic Nucleus Frontal Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dewey, M.M., Davis, P.K., Blasif, J.K. and Barr, L. (1969): Localization of rhodopsin antibody in the retina of the frog. J. Mol. Biol. 39: 395–405.Google Scholar
  2. 2.
    Dodt, E., Ueck, M. and Oksche, A. (1971): Relations of structure and function: The pineal organ of lower vertebrates. Proc. Purkinje Symp. Brno 253–278.Google Scholar
  3. 3.
    Hehn, G. v. (1970): Über den Feinbau des hyponeuralen Nervensystems des Seesternes. Asterial Rubens L. Z. Zellforsch. 105: 137–154.Google Scholar
  4. 4.
    Jan, L.Y. and Revel, J.-P. (1974): Ultrastructural localization of rhodopsin in the vertebrate retina. J. Cell Biol. 62: 257–273.PubMedCrossRefGoogle Scholar
  5. 5.
    Kolmer, W. (1930): Über einen supraependymalen Nervenplexus in den Hirnventrikeln der Affen. Z. Anat. Entwickl.-Gesch. 93: 182–187.Google Scholar
  6. 6.
    Konstantinova. M. (1973): Monoamines in the liquor-contacting nerve cells in the hypothalamus of the lamprey, Lampetra fluviatilis L. Z. Zellforsch. 144: 549–557.Google Scholar
  7. 7.
    Meves, A. (1973): Elektronenmikroskopische Untersuchungen über die Zytoarchitektur des Gehirns von Branchiostoma lanceolatum. Z. Zellforsch. 139: 511–532.PubMedCrossRefGoogle Scholar
  8. 8.
    Papermaster, D.S., Schneider, B.G., Zorn, M.A. and Kraehenbuhl, J.P. (1978): Immunocytochemical localization of opsin in outer segments and Golgi zones of frog photoreceptor cells. An electron microscope analysis of cross-linked albumin-embedded retinas. J. Cell Biol. 77: 196–210.Google Scholar
  9. 9.
    Ramon y Cajal, S. (1935): Die Neuronenlehre. In: Handbuch der Neurologie.1, O. Bunke and O. Foerster (eds.), pp. 887–982, Springer, Berlin.Google Scholar
  10. 10.
    Shioda, S., Honma, Y., Yoshie, S. and Hosoya, Y. (1977): Scanning electron microscopy of the third ventricular wall in the lamprey, Lampetra japonica. Arch. histol. jap. 40: 41–49.Google Scholar
  11. 11.
    Stendell, W. (1914): Zur Histologie des Rückenmarkes von Amphioxus. Anat. Anz. 46: 258–267.Google Scholar
  12. 12.
    Tretjakoff, D. (1909): Das Nervensystem von Ammocoetes. II. Gehirn. Arch. mikr. Anat. 74: 636–779.Google Scholar
  13. 13.
    Vigh, B., Teichmann, I. and Aros, B. (1969): Das Paraventrikularorgan und das Liquorkontaktneuronensystem. Anat. Anz. Suppl. 125: 683–688.Google Scholar
  14. 14.
    Vigh, B. and Vigh-Teichmann, I. (1973): Comparative ultrastructure of the CSF-contacting neurons. Int. Review Cytol. 35: 189–251.Google Scholar
  15. 15.
    Vigh, B. and Vigh-Teichmann, I. (1974): Vergleich der Ultrastruktur der Liquorkontaktneurone und Pinealozyten. Anat. Anz. Suppl. 68: 433–443.Google Scholar
  16. 16.
    Vigh, B. and Vigh-Teichmann, I. (1977): Studies on the vascular sac and related structures. Nova Acta Leopoldina Suppl. 9: 97–102.Google Scholar
  17. 17.
    Vigh, B., Vigh-Teichmann, I. and Aros, B. (1975): Comparative ultrastructure of cerebrospinal fluidcontacting neurons and pinealocytes. Cell Tiss. Res. 158: 409–424.Google Scholar
  18. 18.
    Vigh-Teichmann, I. (1971): A hypothalamikus periventricularis szürkeallómany és a liquor cerebrospinalis kapcsolatanak összehasonlitó morfólogiai vizsgalata. (Comparative morphological study of the relation between hypothalamic periventricular gray substance and cerebrospinal fluid. In Hungarian) Cand. Med. Sci. Thesis, Hung. Acad. Sci., Budapest.Google Scholar
  19. 19.
    Vigh-Teichmann, I. and Vigh, B. (1974): The infundibular cerebrospinal fluid-contacting neurons. Advances Anat. Embryol. Cell Biol. 50: 2.Google Scholar
  20. 20.
    Vigh-Teichmann, I. and Vigh, B. (1977): Zilientragende Perikaryen im Diencephalon. Verh. Anat. Ges. 71: 989–995.Google Scholar
  21. 21.
    Vigh-Teichmann, I., Vigh, B. and Aros, B. (1976): Cerebrospinal fluid-contacting neurons, ciliated perikarya and “peptidergic” synapses in the magno-cellular preoptic nucleus of teleostean fishes. Cell Tiss. Res. 165: 397–413.Google Scholar
  22. 22.
    Vigh-Teichmann, I., Vigh, B. and Aros, B. (1976): Ciliated neurons and different types of synapses in anterior hypothalamic nuclei of reptiles. Cell Tiss. Res. 174: 139–160.Google Scholar
  23. 23.
    Vigh-Teichmann, I., Vigh, B., Aros, B., Jennes, L., Sikora, K. and Kovacs, J. (1979): Scanning and transmission electron microscopy of intraventricular dendrite terminals of hypothalamic cerebrospinal fluid-contacting neurons in Triturus vulgaris. Z. mikr.-anat. Forsch. 93: 4, in press.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • I. Vigh-Teichmann
    • 1
    • 2
  • B. Vigh
    • 1
    • 2
  • P. Rohlich
    • 1
    • 2
  • R. Olsson
    • 1
    • 2
  1. 1.Second Department of AnatomyMedical UniversityBudapestHungary
  2. 2.Zoological Institute of the UniversityStockholmSweden

Personalised recommendations