Advertisement

Tubulin in Developing Rat Brain: Regional Distribution and Effect of Glucocorticoids

  • R. Mileusnić
  • S. Kanazir
  • Lj. M. Rakić

Abstract

The relationship between the various anatomical and chemical compartments of the developing brain changes continuously as a result of many processes. They reach their “optimum” level during early adulthood but thereafter do exhibit some effects with age (1, 19, 42).

Keywords

Soluble Fraction Caudate Nucleus Particulate Fraction Tubulin Dimer Microtubule Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bamburg, J.R., Shooter, E.M. and Wilson, L. (1973): Developmental changes in microtubule protein of chick brain. Biochem. 12: 1476–1482.CrossRefGoogle Scholar
  2. 2.
    Bock, E. (1978) Brain specific proteins. J. Neurochem. 30: 7–14.PubMedCrossRefGoogle Scholar
  3. 3.
    Borisy, G.G. (1972): A rapid method for quantitative determination of microtubule protein using DEAE cellulose filters. Anal. Biochem. 50: 373–385.Google Scholar
  4. 4.
    Brattgard, S.O., Endström, J.E. and Hydén, H. (1957): The chemical changes in regenerating neuron. J. Neurochem. 1: 316–325.PubMedCrossRefGoogle Scholar
  5. 5.
    Chytil, F. and Toft, D. (1972): Corticoid binding component in rat brain. J. Neurochem. 19: 2877–2880.PubMedCrossRefGoogle Scholar
  6. 6.
    Cronly-Dillon, J.R. and Perry, G.W. (1976): Tubulin synthesis in developing rat visual cortex. Nature 261: 581–583.PubMedCrossRefGoogle Scholar
  7. 7.
    Dahlström, A. (1971): Axoplasmic transport with particular respect to adrenergic neurons. Phylos. Trans. R. Soc., London (Biol.) 261: 325–358.Google Scholar
  8. 8.
    Davison, A.N. (1977): Biochemical, morphological and functional changes in developing brain. In: Biochemical Correlates of Brain Structure and Function, A.N. Davison (ed.), pp. 1–13, Academic Press, New York.Google Scholar
  9. 9.
    Dunn, A.J., Gildersleeve, N.B. and Gray, H.E. (1978): Mouse brain tyrosine hydroxylase and glutamic acid decarboxylase following treatment with adrenocorticotropic hormone, vasopressin or corticosterone. J. Neurochem. 31: 977–982.PubMedCrossRefGoogle Scholar
  10. 10.
    Etgen, A.M., Lee, K.S. and Lynch, G. (1979): Glucocorticoid modulation of specific protein metabolism in hippocampal slices maintained in vitro. Brain Res. 165: 37–45.Google Scholar
  11. 11.
    Feit, H.G., Dutton, G.R., Barondes, S.H. and Shelanski, M.L. (1971): Microtubule protein. Identification and transport to nerve endings. J. Cell biol. 51: 138–147.Google Scholar
  12. 12.
    Gerlach, J.L. et al. (1976): Cells in regions of rhesus monkey brain and pituitary retain radioactive estradiol, corticosterone and cortisol differentially. Brain Res. 103: 603–612.PubMedCrossRefGoogle Scholar
  13. 13.
    Iqbal, K., Grundel-Iqbal, I., Wisniewski, H.M. and Terry, R.D. (1977): On neurofilament and neuro-tubule proteins from human autopsy material. J. Neurochem. 29: 417–424.PubMedCrossRefGoogle Scholar
  14. 14.
    Knizley, H., Jr. (1972): The hippocampus and septal area as primary target sites for corticosterone. J. Neurochem. 19: 2737–2745.PubMedCrossRefGoogle Scholar
  15. 15.
    Kraulis, I., et al. (1975): Distribution, metabolism and biological activity of deoxycorticosterone in the central nervous system. Brain Res. 88: 1–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Laemmli, U.K. and Favre, M. (1973): Maturation of the head of bacteriophage T4.I.DNA packing events. J. Mol. Biol. 80: 575–599.Google Scholar
  17. 17.
    Laskey, R.A. and Mills, D.A. (1975): Quantitative film detection of 3H + 14C on polyacrylamide gels by fluorography. Europ. J. Biochem. 56: 335–341.Google Scholar
  18. 18.
    Lehrer, G.M., Maker, H.S. and Weisserbath, S. (1973): Brain uptake of cortisol and corticosterone from CSF and systemic sites. Neurology 23: 63–68.PubMedGoogle Scholar
  19. 19.
    Lim, L. (1977): Regulation of RNA metabolism in the developing brain. In: Biochemical Correlates of Brain Structure and Function, A.N. Davison (ed.), pp. 15–41, Academic Press, New York.Google Scholar
  20. 20.
    Lowry, O.B., Rosebrough, N.S., Farr, A.L. and Randal, R.J. (1951): Protein measurement with folin-phenol reagent. J. Biol. Chem. 193: 265–285.Google Scholar
  21. 21.
    McEwen, B.S. (1976): Interactions between hormones and nerve tissue. Sci. American, June: 48–58.Google Scholar
  22. 22.
    McEwen, B.S., DeKloet, R. and Wallach, G. (1976): Interactions in vivo and in vitro of corticosteroids and progesterone with cell nuclei and soluble macromolecules from rat brain regions and pituitary. Brain Res. 105: 129–136.PubMedCrossRefGoogle Scholar
  23. 23.
    McEwen, B.S. and Wallach, G. (1973): Corticosterone binding to hippocampus: Nuclear and cytosol binding in vitro. Brain Res. 57: 373–386.Google Scholar
  24. 24.
    McEwen, B.S., Wallach, G. and Magnus, C. (1974): Corticosterone binding to hippocampus: Immediate and delayed influence of adrenal secretion. Brain Res. 70: 321–334.Google Scholar
  25. 25.
    McEwen, B.S., Weiss, J.M. and Schwartz, L.S. (1969): Uptake of corticosterone by rat brain and its concentration by certain limbic structures. Brain Res. 16: 227–241.PubMedCrossRefGoogle Scholar
  26. 26.
    McEwen, B.S., Weiss, J.M. and Schwartz, L.S. (1969): Retention of Corticosterone by cell nuclei from brain regions of adrenalectomized rats. Brain Res. 17: 471–482.CrossRefGoogle Scholar
  27. 27.
    Meyer, J., Lnine, V.N., Khylchevskaya, R.I. and McEwen, B.S. (1979): Glucocorticoids and hippocampal enzyme activity. Brain Res. 166: 172–175.PubMedCrossRefGoogle Scholar
  28. 28.
    Mileusnid, R. (1978): Changes in Tubulin Content during Development and Aging of Rat Brain. Doctoral Dissertation, Medical Faculty, University of Belgrade, June, 1978.Google Scholar
  29. 29.
    Mileusnid, R. and Rakid, Lj. M. (1979): Brain tubulin in the function of pre-and postnatal development and aging. Developmental Neurosci., submitted.Google Scholar
  30. 30.
    Perry, G.W. and Cromly-Dillon, J.R. (1978): Tubulin synthesis during a critical period in visual cortex development. Brain Res. 142: 374–378.PubMedCrossRefGoogle Scholar
  31. 31.
    Rakid, Lj. M., Mileusnid, R., Rogad, Lj. and Veskov, R. (1979): Some biochemical aspects of electroconvulsive seizure. In: Pathophysiology of Cerebral Energy Metabolism, B. B. Mrgulja, Lj. M. Rakid, I. Klatzo and M. Spatz (eds.), pp. 281–311, Plenum Press, New York.Google Scholar
  32. 32.
    Roberts, S. (1973): Alterations in cerebral protein-synthesizing system during maturation. In: Progress in Brain Research, D. H. Ford (ed.), Vol. 10, Elsevier Scientific Publ. Co., Amsterdam.Google Scholar
  33. 32.
    Roberts, S. (1973): Alterations in cerebral protein-synthesizing system during maturation. In: Progress in Brain Research, D. H. Ford (ed.), Vol. 10, Elsevier Scientific Publ. Co., Amsterdam.Google Scholar
  34. 34.
    Rose, S.P.R. and J. Haywood (1977): Experience, learning and brain metabolism. In: Biochemical Correlates of Brain Structure and Function, A.N. Davison (ed.), pp. 249–292, Academic Press, New York.Google Scholar
  35. 35.
    Rose, S.P.R., Sinha, A.K. and Jones-Lecointe, A. (1976): Synthesis of tubulin-enriched fraction in rat visual cortex is modulated by dark-rearing and light-exposure. FEBS Letters 65, 2: 135–139.PubMedCrossRefGoogle Scholar
  36. 36.
    Schmitt, H., Gozes, I. and Littauer, U.Z. (1977): Decrease in levels and rates of synthesis of tubulin and actin in developing rat brain. Brain Res. 121: 327–342.PubMedCrossRefGoogle Scholar
  37. 37.
    Shelanski, M.L. (1973): Microtubules. In: Proteins of the Nervous System, D.J. Schneider (ed.), pp. 227241, Raven Press, New York.Google Scholar
  38. 38.
    Stith, R.D., Pearson, R.J. and Dana, R.C. (1976): Uptake and binding of 3H-hydrocortisone by various pig brain regions. Brain Res. 117: 115–124.PubMedCrossRefGoogle Scholar
  39. 39.
    Vesco, R. and Guiditta, A. (1968): Disaggregation of brain polysomes induced by electroconvulsive treatment. J. Neurochem. 15: 81–85.PubMedCrossRefGoogle Scholar
  40. 40.
    Warembourg, M. (1975): Radioautographic study of the rat brain after injection of 1,2,-3H-corticosterone. Brain Res. 89: 61–70.PubMedCrossRefGoogle Scholar
  41. 41.
    Weisenberg, R.C., Borisy, G.G. and E.W. Taylor (1968): The colchicine binding protein of mammalian brain and its relation to microtubules. Biochem. 7: 4466–4479.CrossRefGoogle Scholar
  42. 42.
    Weiss, B. (1971): Ontogenetic development of adenyl cyclase and phosphodiesterase in rat brain. J. Neurochem. 18: 469–477.PubMedCrossRefGoogle Scholar
  43. 43.
    Wrange, O. (1979): A comparison of the glucocorticoid receptor in cytosol from rat liver and hippo-campus. Biochim. Biophys. Acta 582: 346–357.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • R. Mileusnić
    • 1
  • S. Kanazir
    • 1
  • Lj. M. Rakić
    • 1
  1. 1.Institute for Biological ResearchInstitute of Biochemistry Faculty of MedicineBelgradeYugoslavia

Personalised recommendations