Advertisement

Further Studies on Isolated Brain Capillaries: Some Characteristics of the Adenosine Triphosphatase, Adenylate- and Guanylate Cyclase

  • F. Joó
  • I. Karnushina
  • I. Tóth
  • E. Dux

Abstract

In light of recent results emphasizing the primary importance of capillary endothelium in the maintenance of the blood-brain barrier (4, 24, 41, 43), it has become important to perform biochemical studies on a subcellular fraction enriched in brain capillaries. A procedure for the isolation of brain capillaries was originally developed in our laboratory (26) and has been modified by several authors (5, 15, 32, 47). The availability of the micromethod has promoted different studies aiming at the better elucidation of regulatory mechanisms in relation to the adaptations of cerebral blood flow and the blood-brain barrier.

Keywords

ATPase Activity Adenylate Cyclase Basal Lamina Guanylate Cyclase Ergot Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, W.P., Mittal, C.K., Katsuki, S. and Murad, F. (1977): Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc. Nat. Acad. Sci. USA 74: 3203–3207.PubMedCrossRefGoogle Scholar
  2. 2.
    Baca, G.M. and Palmer, G.C. (1978): Presence of hormonally-sensitive adenylate cyclase receptors in capillary-enriched fractions from rat cerebral cortex. Blood Vessels 15: 286–298.PubMedGoogle Scholar
  3. 3.
    Betz, A.L. and Goldstein, G.W. (1978): Polarity of the blood-brain barrier: Neutral amino acid transport into isolated brain capillaries. Science 202: 225–227.PubMedCrossRefGoogle Scholar
  4. 4.
    Bodenheimer, T.S. and Brightman, M.W. (1968): A blood-brain barrier to peroxidases surrounded by perivascular spaces. Am. J. Anat. 122: 249–268.PubMedCrossRefGoogle Scholar
  5. 5.
    Brendel, K., Meezan, E. and Carlson, E.C. (1974): Isolated brain microvessels: A purified, metabolically active preparation from bovine cerebral cortex. Science 185: 953–955.PubMedCrossRefGoogle Scholar
  6. 6.
    Brown, B.L., Albano, J.D.M., Ekins, R.P. and Sgherzi, A.M. (1971): A simple and sensitive saturation assay method for the measurement of adenosine 3′:5′-cyclic monophosphate. Biochem. J. 121: 561–562.PubMedGoogle Scholar
  7. 7.
    Csanda, E., Joó, F., Somogyi, I., Szücs, A., Saal, M., August, A. and Komoly, S. (1977): Structural, ultra-structural and functional reactions of the brain after implanting Yttrium 90 rods used in stereotactic neurosurgery. Acta Neurochirurg. Suppl. 24: 139–147.CrossRefGoogle Scholar
  8. 8.
    Deshaiah, D. and Ho, I.K. (1977): Kinetics of catecholamine sensitive Na+–K+ ATPase activity in mouse brain synaptosomes. J. Neurochem. 26: 2029–2035.Google Scholar
  9. 9.
    Djuricic, B.M. and Mrsulja, B.B. (1977): Enzymic activity of the brain: Microvessels vs. total forebrain homogenata. Brain Res. 138: 561–564.PubMedCrossRefGoogle Scholar
  10. 10.
    Djuricic, B.M. and Mrsulja, B.B. (1979): Brain microvessel hexokinase: Kinetic properties. Experientia 35: 169–171.PubMedCrossRefGoogle Scholar
  11. 11.
    Dunham, E.W., Haddox, M.K. and Goldberg, N.D. (1974): Alteration of vein cyclic 3′:5′ nucleotide concentrations during changes in contractility. Proc. Nat. Acad. Sci. USA 71: 815–819.PubMedCrossRefGoogle Scholar
  12. 12.
    Eisenberg, H.M. and Suddith, R.L. (1977): Sodium-potassium ATPase in brain capillaries. Soc. for Neurosci. Abstract Vol. 3: 217.Google Scholar
  13. 13.
    Firth, J.A. (1977): Cytochemical localization of the K+ regulation interface between blood and brain. Experientia 33: 1093–1094.PubMedCrossRefGoogle Scholar
  14. 14.
    Gerristen, M.E., Parks, T.P. and Printz, M.P. (1979): Prostaglandin E2 is the major enzymatic product of endoperoxide/PGH2/metabolism in isolated bovine cerebral microvessels. Fed. Proc. 38: 752.Google Scholar
  15. 15.
    Goldstein, G.W., Wolinsky, J.S., Csejtey, J. and Diamond, I. (1975): Isolation of metabolically active capillaries from rat brain. J. Neurochem. 25: 715–717.PubMedCrossRefGoogle Scholar
  16. 16.
    Hamberger, A. and Hamberger, B. (1966): Uptake of catecholamines and penetration of trypan blue after blood-brain barrier lesions. Z. Zellforsch. 70: 386–392.PubMedCrossRefGoogle Scholar
  17. 17.
    Hartman, B.K. (1973): The innervation of cerebral blood vessels by central noradrenergic neurons. In: Frontiers in Catecholamine Research, E. Usdin and S.H. Snyder (eds.), pp. 91–96, Pergamon Press, New York.Google Scholar
  18. 18.
    Hegstrand, L.R., Kanof, P.D. and Greengard, P. (1976): Histamine-sensitive adenylate cyclase in mammalian brain. Nature 260: 163–165.PubMedCrossRefGoogle Scholar
  19. 19.
    Hjelle, J.T., Baird-Lambert, J., Cardinale, G., Spector, S. and Udenfriend, S. (1978): Isolated microvessels: The blood brain barrier in vitro. Proc. Nat. Acad. Sci. USA 75: 4544–4548.PubMedCrossRefGoogle Scholar
  20. 20.
    Huang, M. and Drummond, G.I. (1979): Adenylate cyclase in cerebral microvessels. Fed. Proc. 38: 532.Google Scholar
  21. 21.
    Joó, F. (1968): The effect of the inhibition of adenosine triphosphatase activity on the fine structural organization of brain capillaries. Nature 219: 1378–1379.PubMedCrossRefGoogle Scholar
  22. 22.
    Joó, F. (1969): Changes in the molecular organization of the basement membrane after inhibition of adenosine triphosphatase activity in the rat brain capillaries. Cytobios 3: 289–301.Google Scholar
  23. 23.
    Joó, F. (1969): Electron histochemical structure of capillaries in the rat brain. Acta Biol. Szegedienses 15: 79–88.Google Scholar
  24. 24.
    Joó, F. (1971): Increased production of coated vesicles in the brain capillaries during enhanced permeability of the blood-brain barrier. Brit. J. Exp. Pâthol. 52: 646–649.Google Scholar
  25. 25.
    Joó, F. (1972): Effect on N6O2-dibutyryl cyclic 3′:5′-adenosine monophosphate on the pinocytosis of brain capillaries of mice. Experientia 28: 1470.PubMedCrossRefGoogle Scholar
  26. 26.
    Joó, F. and Karnushina, I. (1973): A procedure for the isolation of capillaries from rat brain. Cytobios 8: 41–48.PubMedGoogle Scholar
  27. 27.
    Joó, F., Rakonczay, Z. and Wollemann, M. (1975): cAMP-mediated regulation of the permeability in the brain capillaries. Experientia 31: 582–583.Google Scholar
  28. 28.
    Joó, F. (1979): Significance of adenylate cyclase in the regulation of permeability of brain capillaries In: Pathophysiology of Cerebral Energy Metabolism, B.B. Mrsulja, Lj.M. Rakic, I. Klatzo and M. Spatz (eds.), pp. 211–237, Plenum Publ. Corp., New York.CrossRefGoogle Scholar
  29. 29.
    Joó, F. (1979): The role of adenosine triphosphatase in the maintenance of molecular organization of the basal lamina in the brain capillaries. In: Frontiers in Matrix Biology, A.M. Robert, R. Boniface and L. Robert (eds.), pp. 166–182, S. Karger, New York.Google Scholar
  30. 30.
    Karnushina, I.L., Palacios, J.M., Barbin, G., Dux, E., Joó, F. and Schwartz, J.C. (1979): Histamine-related enzymes and histamine receptors in isolated brain capillaries. Agents and Actions 9: 89–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Karnushina, I.L., Palacios, J.M., Barbin, G., Dux, E., Job, F. and Schwartz, J.C. (1979): Studies on a capillary-rich fraction isolated from brain: Histaminergic components and characterization of the histamine receptors linked to adenylate cyclase. J. Neurochem. (submitted for publication).Google Scholar
  32. 32.
    Kolber, A.R., Bagnell, C.R., Krigman, M.R., Hayward,J. and Morell, P. (1979): Transport of sugars into microvessels isolated from rat brain: A model for the blood-brain barrier. J. Neurochem. 33: 419–432.PubMedCrossRefGoogle Scholar
  33. 33.
    Lowry, O.H., Rosenbrough, N.J., Farr, A.L. and Randall, R.J. (1951): Protein measurements with the folin phenol reagent. J. Biol. Chem. 193: 265–275.PubMedGoogle Scholar
  34. 34.
    Mason, R.G. and Saba, S.R. (1969): Platelet ATPase activities. I. Ecto-ATPases of intact platelets and their possible role in aggregation. A. J. Path. 55: 215–223.Google Scholar
  35. 35.
    Miller, W.H. and Nicoll, G.D. (1979): Evidence that cyclic GMP regulates membrane potential in rod photoreceptors. Nature 280: 64–66.CrossRefGoogle Scholar
  36. 36.
    Millonig, G. (1969): Advantages of a phosphate buffer for OsO4 solutions in fixation. J. Appl. Physics 32: 1637.Google Scholar
  37. 37.
    Mrsulja, B.B., Mrsulja, B.J., Fujimoto, T., Klatzo, I. and Spatz, M. (1976): Isolation of brain capillaries: A simplified technique. Brain Res. 110: 361–365.PubMedCrossRefGoogle Scholar
  38. 38.
    Nathanson, J.A. and Glaser, G.H. (1979): Identification of 8-adrenergic-sensitive adenylate cyclase in intracranial blood vessels. Nature 278: 567–569.PubMedCrossRefGoogle Scholar
  39. 39.
    Palmer, G.C. (1979): Beta adrenergic receptors mediate adenylate cyclase response in rat cerebral cortex. Neuropharmacol. (in press).Google Scholar
  40. 40.
    Rathbun, W.B. and Betlach, M.V. (1969): Estimation of enzymatically produced ortophosphate in the presence of cystein and adenosinetriphosphate. Anal. Biochem. 28: 436–445.PubMedCrossRefGoogle Scholar
  41. 41.
    Reese, T.S. and Karnovsky, M.J. (1967): Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34: 207–217.PubMedCrossRefGoogle Scholar
  42. 42.
    Reik, L., Petzold, G.L., Higgins, J.A., Greengard, P. and Barrnett, R.J. (1970): Hormone-sensitive adenyl cyclase: Cytochemical localization in rat liver. Science 168: 382–384.PubMedCrossRefGoogle Scholar
  43. 43.
    Rodriguez, L.A. (1955): Experiments on the histological locus of the haematoencephalic barrier. J. Comp. Neurol. 102: 27–45.PubMedCrossRefGoogle Scholar
  44. 44.
    Saito, T. and Keino, H. (1976): Ultrastructural demonstration of guanylate cyclase activity in rat kidney. Fifth Internat. Congress of Histochemistry, pp. 303; Bucharest-Roumania.Google Scholar
  45. 45.
    Schmidt, M.J. and Hill, L.E. (1977): Effects of ergots on adenylate cyclase activity in the corpus striatum and pituitary. Life Sci. 20: 789–798.PubMedCrossRefGoogle Scholar
  46. 46.
    Schultz, G., Hardman, J.G., Schultz, K., Baird, C.E. and Sutherland, E.W. (1973): The importance of calcium ions for the regulation of guanosine 3′:5′-cyclic monophosphate levels. Proc. Nat. Acad. Sci. USA 70: 3889–3893.PubMedCrossRefGoogle Scholar
  47. 47.
    Selivonchick, D.P. and Roots, B.I. (1977): Lipid and fatty acyl composition of rat brain endothelia isolated by a new technique. Lipids 12: 165–169.PubMedCrossRefGoogle Scholar
  48. 48.
    Sershen, H. and Lajtha, A. (1976): Capillary transport of amino acids in the developing brain. Exp. Neurol. 53: 465–474.PubMedCrossRefGoogle Scholar
  49. 49.
    Skou, J.C. (1957): The influence of some cations on an adenosine triphosphatase from peripheral nerves. Rinchim. Rinphys. Acta 23: 394–401.Google Scholar
  50. 50.
    Steiner, A.L., Wehman, R.E., Parker, C.W. and Kipnis, D.M. (1972): Radioimmunoassay for the measurement of cyclic nucleotides. In: Advances in Cyclic Nucleotide Research, Vol. 2., P. Greengard and G.A. Robinson (eds.), pp. 51–61, Raven Press, New York.Google Scholar
  51. 51.
    Suddith, R.L., Crawford, J.S. and Eisenberg, H.M. (1978): Isolated brain microvessels: Sodium-potassium ATPase and potassium transport. J. Cell Biol. 79: 103a.Google Scholar
  52. 52.
    Sun, A.Y. and Samorajski, T. (1970): Effects of ethanol on the activity of adenosine-tripholphatase acetylcholinesterase in synaptosomes isolated from guinea pig brain. J. Neurochem. 17: 1365–1372.PubMedCrossRefGoogle Scholar
  53. 53.
    Torack, R.M. and Barrnett, R.J. (1964): The fine structural localization of nucleoside phosphatase activity in the blood-brain barrier. J. Neuropath. exp. Neurol. 23: 46–59.PubMedCrossRefGoogle Scholar
  54. 54.
    Webb, J.L. (1966): Enzyme and metabolic inhibitors, Vol. II. Academic Press, New York.Google Scholar
  55. 55.
    Westergaard, E. (1975): Enhanced vesicular transport of exogenous peroxidase across cerebral vessels, induced by serotonin. Acta Neuropathol. 32: 27–42.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • F. Joó
    • 1
  • I. Karnushina
    • 1
  • I. Tóth
    • 1
  • E. Dux
    • 1
  1. 1.Laboratory of Molecular Neurobiology, Institute of BiophysicsBiological Research CenterSzegedHungary

Personalised recommendations