On Global Properties of Quantum Systems

  • H. D. Doebner
  • J. Tolar


Consider a smooth connected manifold M and a physical system which is “based” on M (configuration space), i.e. one can localize the system in a sufficiently large class of regions U M and observe how the localization region moves. The properties of such a system will depend on the geometry of M. Its description may be based in a natural manner on those objects on M, which are characteristic for its structure, like compactly supported functions, n-forms, vector fields,jets, etc. Special examples are Hamiltonian systems [1], non-relativistic quantum systems on homogeneous spaces [2], [3] and Maxwell fields on manifolds [4], [5].


Configuration Space Global Property Selfadjoint Operator Selfadjoint Extension Position Projection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Abraham and J.E. Marsden, “Foundation of Mechanics”, 2 nd edition, Benjamin (1978)Google Scholar
  2. 2.
    R.W. Machey, “Induced Representations and Quantum Mechanics”, Benjamin, New York (1968)Google Scholar
  3. 3.
    H.D. Doebner and J. Tolar, J. Math. Phys., 16: 975 (1975)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    C.M. Misner and J.A. Wheeler, Ann. Phys. (N.Y.), 2: 525 (1957)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    L.L. Henry, J. Math. Phys., 18: 662 (1977)ADSMATHCrossRefGoogle Scholar
  6. 6.
    W. Greub, St. Halperin and R. Vanstone, “Connections, Curvature and Cohomology”, Academic Press, New York (1972)MATHGoogle Scholar
  7. 7.
    J.M. Leinaas, Nuovo Cim., 47A: 19 (1978)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    H.D. Doebner and J.E. Werth, J. Math. Phys., 20: 1011 (1979)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    M. Kac, see e.g. B. Booß, “Topologie und Analysis”, Springer, Berlin (1977)Google Scholar
  10. 10.
    M.F. Atiyah, N.J. Hitchin and I.M. Singer, Proc.Roy. Soc. London, A362: 425 (1978)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    J. Petry, “Proceedings of the Conference on Differentialgeometric Methods in Mathematical Physics, Clausthal, 1978, to be published in ”Lecture Notes in Physics“, Springer, Berlin (1980)Google Scholar
  12. 12.
    H.D. Doebner, J. Tolar in preparationGoogle Scholar
  13. 13.
    I.E. Segal, J. Math. Phys., 1: 468 (1960)ADSMATHCrossRefGoogle Scholar
  14. 14.
    F. Pasemann, Proceedings of the Conference on Differentialgeometric Methods in Mathematical Physics, Clausthal, 1978, to be published in “Lecture Notes in Physics”, Springer, Berlin (1980)Google Scholar
  15. 15.
    H. Snellman, Ann. Inst. Henri Poincaré, A24: 393 (1976)Google Scholar
  16. 16.
    S.T. Hu, “Homology Theory’; Holden-Day, San Francisco (1970)Google Scholar
  17. 17.
    J.M. Jauch, “Foundations of Quantum Mechanics”, Addison-Wesley, Reading, Mass. (1968)Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • H. D. Doebner
    • 1
  • J. Tolar
    • 2
  1. 1.Technische UniversitätGermany
  2. 2.Czech Technical UniversityCzech Republic

Personalised recommendations