Advertisement

Symmetry Breaking in Embryology and in Neurobiology

  • J. D. Cowan

Abstract

As Sattinger (1980) has emphasized, there is an intimate connection between the symmetries of a dynamical system, and the nature of the solutions manifest at a point of bifurcation. Many aspects of symmetry breaking in biology can be interpreted in such terms. In this paper I shall confine myself to differing aspects of symmetry-breaking in embryology and in neurobiology.

Keywords

Visual Field Symmetry Breaking Form Constant Imaginal Disc Optic Tectum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian, G. K., Foot, W. F., and Sheard, M. H., 1970, J. Pharmacol. Exp. Ther., 171–178.Google Scholar
  2. Auchmuty, J. F. G. and Nicolis, G., 1975, Bifurcation analysis ofGoogle Scholar
  3. nonlinear reaction-diffusion equations I, Bull. Math. Biol. 37–323.Google Scholar
  4. Busse, F. H., 1978, Nonlinear properties of thermal convection, Rep. Prog. Phys. 41–1929.Google Scholar
  5. Cohen, M. H., 1971, Models for the control of development, Symp. Soc. Exptl. Biol. XXV: 455.Google Scholar
  6. Cowan, J. D., 1977, in Neuronal Mechanisms of Visual Perception, ed. E. PSppel et al., NRP Bull. 15: 3.Google Scholar
  7. Crick, F. H. C. and Lawrence, P. A., 1975, Compartments and poly-clones in insect development, Science 189–340.Google Scholar
  8. Ermentrout, G. B. and Cowan, J. D., 1979, A mathematical theory of visual hallucination patterns, Biol. Cybernetics 34–137.Google Scholar
  9. Fischer, B., 1973, Overlap of receptive field centers and represen-tation of the visual field in the cat’s optic tract, Vision Res. 13–2113.CrossRefGoogle Scholar
  10. Garcia-Bellido, A., Ripoli, P., and Morata, G., 1973, Nature New Biol., 245–251.Google Scholar
  11. Gierer, A. and Meinhardt, H., 1972, A theory of biological pattern formation, Kybernetik 12–30.Google Scholar
  12. Haken, H., 1975, Generalized Ginzburg-Landau equations for phase transition-like phenomena in lasers, nonlinear optics, hydrodynamics, and chemical reactions, Z. Physik. B 21:105.Google Scholar
  13. Haken, H. and Olbrich, H., 1978, Analytical treatment of pattern formation in the Gierer-Meinhardt model of morphogenesis, J. Math. Biol. 6–317.Google Scholar
  14. Hoppenstaedt, F. and Gordon, N., 1975, Nonlinear stability analysis of static states which arise through bifurcation, Comm. Pure Appl. Math. XXVIII: 355.Google Scholar
  15. Kauffman, S. A., Shymko, R. M., and Trabert, K., 1978, Control of sequential formation in Drosophila, Science 199–259.Google Scholar
  16. Keener, J. P., 1978, Activators and inhibitors in pattern formation, Studies in Applied Math., 59: 1.MathSciNetGoogle Scholar
  17. Klüver, H., 1967, “Mescal and the Mechanisms of Hallucination,” Chicago: Univ. of Chicago Press.Google Scholar
  18. Lacalli, T. C., and Harrison, L. G., 1978, The regulatory capacity of Turing’s model for morphogenesis, with applications to slime molds, J. theor. Biol. 70–273.Google Scholar
  19. Matkowsky, B. J., 1970, A simple nonlinear dynamic stability problem, Bull. Amer. Math. Soc. 76: 3.Google Scholar
  20. Meinhardt, H. and Gierer, A., preprint.Google Scholar
  21. Nicolis, G. and Prigogine, I., 1977, “Self-Organization in Non-equilibrium Systems,” Wiley, New York.Google Scholar
  22. Prestige, M. C. and Willshaw, D. J., 1975, On a role for competition in the formation of patterned neural connections, Proc. Roy. Soc. Lond. B, 190: 77.Google Scholar
  23. Sattinger, D. H., this volume.Google Scholar
  24. Schwartz, E., 1977, Spatial mapping in the primate sensory projection, Biol. Cybernetics 25–181.Google Scholar
  25. Siegel, R. K., 1977, Hallucinations, Scientific Amer. 237: 4. Siegel, R. K. and West, L. J., 1975, “Hallucinations: Behavior, Experience, and Theory,” Wiley, New York.Google Scholar
  26. Sperry, R. W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, PNAS 50–703.Google Scholar
  27. Steinberg, M. S., 1963, Reconstruction of tissues by dissociated cells, Science 141–401.Google Scholar
  28. Stuart, J. T., 1960, On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows I, J. Fluid. Mech. 9–353.Google Scholar
  29. Turing, A. M., 1952, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. (Lond.) B: 641: 37.Google Scholar
  30. Watson, J., 1960, On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows II, J. Fluid. Mech. 9–371.Google Scholar
  31. Whitelaw, G. and Cowan, J. D., in preparation.Google Scholar
  32. Wilson, H. R. and Cowan, J. D., 1973, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik 13–55.Google Scholar
  33. Wolpert, L., 1971, Adv. Morphogenesis 6–183.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. D. Cowan
    • 1
  1. 1.Department of Biophysics and Theoretical BiologyThe University of ChicagoChicagoUSA

Personalised recommendations