Time, Energy, Relativity, and Cosmology

  • I. E. Segal


One of Einstein’s major messages is that nothing is necessarily a priori; even the most unlikely subjects can be discussed and analyzed, sometimes with revolutionary conclusions. Most notably, he showed that space, time, and of course gravitation, were not at all a priori. Mathematical progress -- at a sophisticated ideational level, rather than at an elementary or classical problem-solving level -- provided the tools for a cogent physical analysis having striking observational consequences, explaining existing anomalies and making predictions which have been precisely confirmed.


Cosmic Background Radiation Minkowski Space Causal Structure Closed Convex Cone Local Clock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Einstein (1917). Kosmologische Betrachtungen zur Allgemeinen Relativitatstheorie. Sitzungsberichte, Preuss. Akad. d. Wissenschaften.Google Scholar
  2. 2.
    J. Leray (1952). Hyperbolic partial differential equations. Ins. Adv. Study, Princeton, N.J.Google Scholar
  3. 3.
    I. E.. Segal (1976). Mathematical cosmology and estragalactic astronomy. Academic Press, New York.Google Scholar
  4. 4.
    H. P. Jakobsen, M. Kon, and I. E. Segal (1979). Angular momentum of the cosmic background radiation. Phys. Rev. Lett. 42, pp. 1788–91.ADSCrossRefGoogle Scholar
  5. 5.
    H. P. Jackobsen, B. Orsted, I. E. Segal, B. Speh, and M. Vergne (1978). Symmetry and causality properties of physical fields. Proc. Nat. Acad. Sci. USA. 75, pp. 1609–11.ADSCrossRefGoogle Scholar
  6. 6.
    J. F. Nicoll and I. E. Segal (1978). Statistical scrutiny of the phenomenological redshift-distance square law. Ann. Phys. 113, pp. 1–28.ADSCrossRefGoogle Scholar
  7. 7.
    J. L. Tits. Lectures at College de France, 1978–79; see also Les espace isotropes de la relativite, Colloque sur la theorie de la relativite, 1959, pp. 107–119, Centre Belge Rech. Math., 1960.Google Scholar
  8. 8.
    E. Vinberg (1963). The theory of homogeneous convex cones. Trudy Moskov. Nat. Obsc. 12, pp. 303–358.MathSciNetGoogle Scholar
  9. 9.
    D. P. Woody and P. L. Richards (1979). Spectrum of the cosmic background radiation. Phys. Rev. Lett. 42, pp. 925–929.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • I. E. Segal
    • 1
  1. 1.Mathematics DepartmentMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations