Finite Subgroups of the Lorentz Group and their Generating Functions

  • J. Patera
  • Y. Saint-Aubin

Abstract

Discretization of Euclidean spaces is a common feature in many physical theories. Typically one is brought to that concept either by the geometrical nature of the object under investigation such as a crystal, or by considerations of technical character, for instance, a desire to avoid occurrence of integrals diverging at small distances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Winternitz and I. Fris, Yad.Fiz.1:889 (1965) [Sov.J.Nucl. Phys.1:636 (1965)].Google Scholar
  2. 2.
    J. Patera, Y. Saint-Aubin and H. Zassenhaus, J. Math. Phys. 21 (1980) (to be published);Google Scholar
  3. A. Janner and T. Janssen, Super-space Groups, Preprint of the Institute for Theoretical Physics, University of Nijmegen (1979).Google Scholar
  4. 3.
    J. Patera, R.T. Sharp and P. Winternitz, J. Math. Phys. 19: 2362 (1978).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 4.
    P. Desmier and R.T. Sharp, J. Math. Phys. 20: 74 (1979).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 5.
    Y. Saint-Aubin, Can. J. Phys. 58 (1980) (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. Patera
    • 1
  • Y. Saint-Aubin
    • 1
  1. 1.Centre de recherche de mathématiques appliquéesUniversité de MontréalMontréalCanada

Personalised recommendations