Advertisement

Symmetry Breaking and Far-from-Equilibrium Order

  • Peter Ortoleva

Abstract

If a drop of ink is placed in a glass of water the eventual outcome is macroscopically homogeneous inky water. This randomization is a result of the second law of thermodynamics. In contrast to this is the familiar Bénard instability1 wherein a temperature inversion (i.e. heating a layer of liquid from below) causes the onset of an organized flow pattern when the temperature difference between the top and the bottom exceeds a critical value. This transition from purely conductive to convective transport of energy is sustained under the influence of a net driving force that maintains the system sufficiently far from equilibrium. The self organization of the molecular motion in the layer of liquid is not a violation of the second law of thermodynamics. Indeed the onset and sustance of pattern is at the expense of a net overall increase of entropy of the universe as energy is transported from a hot to a cold reservoir.

Keywords

Symmetry Breaking Spiral Wave Multiple Time Scale Move Boundary Problem Chemical Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. 1.
    See various articles in Synergetics, Proceedings of the International Workshop on Synergetics at Schloss Elmau, Bavaria, May 2–7, 1977, H. Haken, ed. ( Springer-Verlag, Berlin, 1977 ).Google Scholar
  2. 2.
    Periodicies in Chemistry and Biology, Vol. 4 of Theoretical Chemistry, H. Eyring and D. Henderson, eds. (Academic Press, N.Y., 1978 ).Google Scholar
  3. 3.
    G. Nicoles and I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley, N.Y., 1977 ).Google Scholar
  4. 4.
    See, for example, the discussion in P. Glansdorf and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley Interscience, N.Y., 1971 ).Google Scholar
  5. 5.
    A. M. Turing, Phil. Trans. Roy. Soc. (London) Ser. B, 237, 37 (1952).ADSCrossRefGoogle Scholar
  6. 6.
    B. Hess and A. Boiteau, Ann. Rev. Biochem. 237, 40 (1971);Google Scholar
  7. B. Chance, E. K. Pye, A. K. Chosh and B. Hess, ed., Biological and Biochemical Oscillators( Academic Press, N.Y., 1973 ).Google Scholar
  8. 7.
    L. K. Jaffe, in Membrane Transduction Mechanisms, eds. R. A. Cone and J. E. Dowling (Raven Press, N.Y., 1979 ).Google Scholar
  9. 8.
    R. S. Quatrano, Develop. Biol. 30, 209 (1973).CrossRefGoogle Scholar
  10. 9.
    R. Larter and P. Ortoleva, “A Theoretical Basis for Self-Electrophoreses”, J. Theoret. Biol. (to appear 1980 ).Google Scholar
  11. 10.
    P. Hanusse, P. Ortoleva and J. Ross, Adv. in Chem. Phys., XXXVIII, 317 ( Wiley, N.Y., 1979 ).Google Scholar
  12. 11.
    P. Ortoleva and J. Ross, J. Chem. Phys. 63, 3398 (1975).ADSCrossRefGoogle Scholar
  13. 12.
    D. Feinn and P. Ortoleva, J. Chem. Phys. 67, 2119 (1978).MathSciNetADSCrossRefGoogle Scholar
  14. 13.
    See article by A. T. Winfree in Ref. 2.Google Scholar
  15. 14.
    D. G. Aronson and H. F. Weinberger,Nonlinear Diffusion in Population Genetics, Combustion and Nerve Propagation, Lecture Notes in Math, 446 ( Springer-Verlag, Heidelberg, 1975 ).Google Scholar
  16. 15.
    N. Kopell and L. Howard, Studies on Applied Math. 52, 291 (1973);MathSciNetMATHGoogle Scholar
  17. J. A. Boa, Ph.D. Thesis, California Institute of Technology, Pasadena, California (1974);Google Scholar
  18. P. Ortoleva and J. Ross, J. Chem. Phys. 60, 5090 (1974).ADSCrossRefGoogle Scholar
  19. 16.
    Y. Kuramoto and T. Tsuzuki, Prog. Theor. Phys. 52, 1399 (1974); 54, 687 (1975);CrossRefGoogle Scholar
  20. A. Wunderlin and H. Haken, Z. Physik 393 (1975);Google Scholar
  21. H. Haken, Z. Physik 329, 61 (1978) and references therein;Google Scholar
  22. A. Nitzan, Phys. Rev. A, in press; and in Synergetics, A Workshop, H. Haken, ed., Springer 1977.Google Scholar
  23. 17.
    P. Ortoleva and J. Ross, J. Chem. Phys. 58, 5673 (1973);ADSCrossRefGoogle Scholar
  24. P. Ortoleva, J. Chem. Phys. 64 1395 (1976);ADSCrossRefGoogle Scholar
  25. P. Ortoleva in Theoretical Chemistry, 4, 235 (ed. H. Eyring and Henderson, Academic Press, N.Y., 1978 ).Google Scholar
  26. 18.
    N. Kopell and L. Howard, preprint.Google Scholar
  27. 19.
    P. Ortoleva and J. Ross, J. Chem. Phys. 63, 3398 (1975);ADSGoogle Scholar
  28. P. C. Fife, Rocky Mountain Journal of Math, 7, 309 (1977);MathSciNetGoogle Scholar
  29. J. Stunshine and L. Howard, Studies in Applied Math. (1976);Google Scholar
  30. J. Tyson, Lecture Notes in Biomathematics 10, (Springer-Verlag,1976).Google Scholar
  31. 20.
    S. Schmidt and P. Ortoleva, “Asymptotic Solutions to the FKN Chemical Wave Equations” (preprint).Google Scholar
  32. 21.
    J. R. Ockendon and W. R. Hodgkins, Moving Boundary Problems in Heat Flow and Diffusion( Clarendon Press, Oxford, 1975 ).MATHGoogle Scholar
  33. 22.
    R. Field, E. Koros and R. M. Noyes, J. Am. Chem. Soc. 94, 8649 (1972).CrossRefGoogle Scholar
  34. 23.
    See in Tyson cited in Ref. 19.Google Scholar
  35. 24.
    J. Murray, J. Theoret. Biol. 56, 329 (1976).MathSciNetCrossRefGoogle Scholar
  36. 25.
    S. Schmidt and P. Ortoleva, J. Chem. Phys. 67, 3771 (1977); ibid, “Multiple Chemical Waves Induced by Applied Electric Fields”, J. Chem. Phys. (to appear) and ibid, “Electrical Field Effects on FKN Chemical Waves” (preprint).Google Scholar
  37. 26.
    R. Feeney and P. Ortoleva, “Experimental Studies of Electrical Field Effects on BZZW Chemical Waves” (in preparation).Google Scholar
  38. 27.
    E. S. Hedges and J. E. Myers, The Problem of Physico-Chemical Periodicity(Longmans Green, N.Y., 1926 ).Google Scholar
  39. 28.
    M. R. Flicker and J. Ross, J. Chem. Phys. 60, 3458 (1974).ADSCrossRefGoogle Scholar
  40. 29.
    D. Feinn, P. Ortoleva, W. Scalf, S. Schmidt and M. Wolff, J. Chem. Phys. 69, 27 (1978).ADSCrossRefGoogle Scholar
  41. 30.
    R. Louett, P. Ortoleva and J. Ross, J. Chem. Phys. 69, 949 (1978).ADSGoogle Scholar
  42. 31.
    S. Prager, J. Chem. Phys. 25, 279 (1956).ADSCrossRefGoogle Scholar
  43. 32.
    G. W. Bryant, B. J. Mason, A. P. Vanden Heuvel, Phil. Mas. 8, 505 (1963).ADSCrossRefGoogle Scholar
  44. 33.
    W. W. Mullins and R. F. Sekerka, Crystal Growth(H. S. Peiser, ed.) (Pergamont, Oxford) pg. 691.Google Scholar
  45. 34.
    J. S. Langer and L. A. Turski, “Studies in the Theory of Interfacial Stability I”, (preprint);Google Scholar
  46. J. S. Langer, “Studies in the Theory of Interfacial Stability”, (preprint).Google Scholar
  47. 35.
    J. Chadam and P. Ortoleva, “The Morphological Stability of Growing Bodies”.Google Scholar
  48. 36.
    Y. Bottinga, A. Kudo and D. Weill (1966) Amer. Mineral 51, 792.Google Scholar
  49. 37.
    J. Chadam, D. Feinn, S. Haase and P. Ortoleva, “A Theory of Periodic Zoning in Plageoclase Feldspars”, (preprint).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Peter Ortoleva
    • 1
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations