Monitoring the Metabolic Rate of Germ Cells and Sperm

  • Roy H. Hammerstedt
Part of the Biochemical Endocrinology book series (BIOEND)


The development of mature, fertile sperm from the germinal epithelium occurs within two organs. Spermatogenesis within the testis requires 6–10 weeks, depending on the species, and results in immotile, infertile testicular sperm. During this phase, germ-cell metabolism emphasizes biosynthesis as the cells divide, differentiate, synthesize macromolecules, and develop unique organelles. After spermiation, testicular sperm are transported rapidly to the epididymis. Transport through the epididymis requires 4-16 days, and although important intracellular modifications occur as sperm undergo maturation, the sperm are quiescent with regard to bioenergetics. After ejaculation, sperm metabolism is largely biodegradative to support the function of the highly motile and fertile sperm. Interaction of sperm with components of fluids secreted by the female reproductive tract results in a process termed capacitation. The velocity of the motile sperm, and presumably the rate of biodegradation, increase as a consequence of capacitation.


Germ Cell Motile Sperm Testicular Sperm Exogenous Glucose Endogenous Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alemhn, V., Trejo, R., Morales, E., Hernândez-Jduregui, P., and Delhumeau-Ongay, G., 1978, A simple and rapid technique to isolate enriched populations of spermatocytes and spermatids from the immature rat testis, J. Reprod. Fertil. 54: 67.CrossRefGoogle Scholar
  2. Amann, R., 1979, Computerized measurements of sperm velocity and percentage of motile sperm, in: The Spermatozoon ( D. Fawcett and J.M. Bedford, eds.), pp. 431–435, Urban and Schwartzenberg, Baltimore.Google Scholar
  3. Amann, R.P., and Hammerstedt, R.H., 1980, Validation of a system for computerized measurement of spermatozoa! velocity and percentage of motile sperm, Biol. Reprod. 23: 647.CrossRefGoogle Scholar
  4. Amann, R.P., and Howards, S.S., 1980, Daily spermatozoa! production and epididymal spermatozoa! reserves of the human male, J. Urol. 124: 211.Google Scholar
  5. Amann, R.P., Hokanson, J.F., and Almquist, J.O., 1963, Cannulation of the bovine ductus deferens for quantitative recovery of epididymal spermatozoa, J. Reprod. Fertil. 6: 65.CrossRefGoogle Scholar
  6. Amann, R.Y., Kavanaugh, J.F., Griel, L.C., Jr., and Voglmayr, J.K., 1974. Sperm production of Holstein bulls determined from testicular spermatid reserves, after cannulation of rete testis or vas deferens, and by daily ejaculation, J. Dairy Sci. 57: 93.CrossRefGoogle Scholar
  7. Amann, R.P., Johnson, L., Thompson, D.L., Jr., and Pickett, B.W., 1976, Daily spermatozoa! production, epididymal spermatozoal reserves and transit time of spermatozoa through the epididymis of the rhesus monkey, Biol. Reprod. 15: 586.CrossRefGoogle Scholar
  8. Atkinson, D.A., 1977, Cellular Energy Metabolism and Its Regulation, Academic Press, New York.Google Scholar
  9. Babcock, D.F., First, N.L., and Lardy, H.A., 1975, Transport mechanism for succinate and phosphate localized in the plasma membrane of bovine spermatozoa, J. Biol. Chem. 250: 6488.Google Scholar
  10. Back, D.J., Shenton, J.C., and Glover, T.D., 1974, The composition of epididymal plasma from the cauda epididymidis of the rat. J. Reprod. Fen. 40: 211.CrossRefGoogle Scholar
  11. Barcellona, W.J., and Meistrich, M.L., 1977, Ultrastructural integrity of mouse testicular cells separated by velocity sedimentation, J. Reprod. Fertil. 50: 61.CrossRefGoogle Scholar
  12. Bech, J., and Koefoed-Johnsen, H.H., 1973, Spermiemorfologi og plasmas sammensaetning i bitestikler fra normale tyre samt to tyre med abnormt saedbillede, The Royal Veterinary and Agricultural University Sterility Research Institute Annual Report, p. 9.Google Scholar
  13. Bellvé, A.R., Cavicchia, J.C., Millette, C.F., O’Brien, D.A., Bhatnagar, Y.M., and Dym, M., 1977, Spermatogenic cells of the prepuberal mouse: Isolation and morphological characterization, J. Cell Biol. 74: 68.CrossRefGoogle Scholar
  14. Boyer, P.D., 1967, ‘80 and related exchanges in enzymic formation and utilization of nucleoside triphosphates, in: Current Topics in Bioenergetics, Vol. 2 (D.R. Sanadi, ed.), pp. 99–149, Academic Press, New York.Google Scholar
  15. Brackett, B.G., and Mastrianni, L., Jr., 1974, Composition of oviductal fluid, in: The Oviduct and Its Functions ( A.D. Johnson and C.W. Foley, eds.), pp. 133–159, Academic Press, New York.Google Scholar
  16. Brooks, D.E., 1979, Biochemical environment of sperm maturation, in: The Spermatozoon ( D. Fawcett and J.M. Bedford, eds.), pp. 23–24, Urban and Schwartzenberg, Baltimore.Google Scholar
  17. Bruce, W.R., Furrer, R., Goldberg, R.B., Meistrich, M.L., and Mintz, B., 1973, Genetic control of the kinetics of mouse spermatogenesis, Genet. Res. 22: 155.CrossRefGoogle Scholar
  18. Cascieri, M., Amann, R.P., and Hammerstedt, R.H., 1976, Adenine nucleotide changes at initiation of bull sperm motility, J. Biol. Chem. 251: 787.Google Scholar
  19. Cooper, T.G., and Waites, G.M.H., 1974, Testosterone in rete testis fluid and blood of rams and rats, J. Endocrinol. 62: 619.CrossRefGoogle Scholar
  20. Cooper, T.G., Danzo, B.J., Dipietro, D.L., McKenna, T.J., and Orgebin-Crist, M.C., 1976, Some characteristics of rete testis fluid from rabbits, Andrologia 8: 87.CrossRefGoogle Scholar
  21. Crabo, B., 1965, Studies on the composition of epididymal content in bulls and boars, Acta Vet. Scand. 6 (5): 1.Google Scholar
  22. Darin-Bennett, A., Polos, A., and White, I.G., 1973, A re-examination of the role of phospholipids as energy substrates during incubation of ram sperm, J. Reprod. Fertil. 34: 543.CrossRefGoogle Scholar
  23. Davis, J.C., and Schuetz, A.W., 1975, Separation of germinal cells from immature rat testes by sedimentation at unit gravity, Exp. Cell Res. 91: 79.CrossRefGoogle Scholar
  24. Dawson, A.G., 1979, Oxidation of cytosolic NADH formed during aerobic metabolism in mammalian cells, Trends Biochem. Sci. 4: 171.CrossRefGoogle Scholar
  25. Decker, K., Jungermann, K., and Thauer, R.K., 1970, Energy production in anaerobic organisms, Angew. Chem. Int. Ed. Engl. 9: 138.CrossRefGoogle Scholar
  26. Deibel, F.C., Jr., Smith, J.E., Crabo, B.G., and Graham, E.F., 1976, Evaluation of six assays of sperm quality by means of their accuracy, precision, and sensitivity in separating known induced levels of damage, VIIIth International Congress on Animal Reproduction and Artificial Insemination, Cracow, p. 888.Google Scholar
  27. Denton, R.M., and Pogson, C.I., 1976, Outline Studies in Biology: Metabolic Regulation, John Wiley ( Halsted Press ), New York.Google Scholar
  28. Dietrich, S.M.C., and Burris, R.H., 1967, Effect of exogenous substrates on the endogenous respiration of bacteria, J. Bacteriol. 93: 1467.Google Scholar
  29. Fawcett, D.W., Neaves, W.B., and Flores, M.N., 1973, Comparative observations on intertubular lymphatics and the organization of the interstitial tissue of the mammalian testis, Biol. Reprod. 9: 500.Google Scholar
  30. Forrest, W.W., 1969, Bacterial calorimetry, in: Biochemical Calorimetry (H.D. Brown, ed.), Chapter VIII, pp. 165–198, Academic Press, New York.Google Scholar
  31. Fournier-Delpech, S., Colas, G., Courot, M., Ortavant, R., and Brice, G., 1979, Epididymal sperm maturation in the ram: Motility, fertilizing ability and embryonic survival after uterine artificial insemination in the ewe, Ann. Biol. Anim. Bloch. Biophys. 19: 597.CrossRefGoogle Scholar
  32. Free, M.J., and Jaffe, R.A., 1979, Collection of rete testis fluid from rats without previous efferent duct ligation, Biol. Reprod. 20: 269.CrossRefGoogle Scholar
  33. Galena, H.J., and Terner, C., 1974, Conversion of progesterone to androgens by non-flagellate germinal cells isolated from seminiferous tubules of rat testis, J. Endocrinol. 93: 269.CrossRefGoogle Scholar
  34. Gondos, B., 1977, Testicular development, in: The Testis, Vol. IV ( A.D. Johnson and W.R. Gomes, eds.), p. 9–37, Academic Press, New York.Google Scholar
  35. Gottschalk, G., and Andreesen, J.R., 1979, Energy metabolism in anaerobes, in: International Review of Biochemistry: Microbial Biochemistry, Vol. 21 ( J.R. Quayle, ed.), pp. 86–115, University Park Press, Baltimore.Google Scholar
  36. Grabske, R.J., Lake, S., Gledhill, B.L., and Meistrich, M.L., 1975, Centrifugal elutriation: Separation of spermatogenic cells on the basis of sedimentation velocity, Cell. Physiol. 86: 177.CrossRefGoogle Scholar
  37. Hammerstedt, R.H., 1973, An automated method for ATP analysis utilizing the luciferin—luciferase reaction, Anal. Biochem. 52: 449.CrossRefGoogle Scholar
  38. Hammerstedt, R.H., 1975a, Tritium release from [2–3H]-D-glucose as a monitor of glucose consumption by bovine sperm, Biol. Reprod. 12: 545.CrossRefGoogle Scholar
  39. Hammerstedt, R.H., 1975b, Use of high speed dialysis to prepare bovine sperm for metabolic studies, Biol. Reprod. 13: 389.CrossRefGoogle Scholar
  40. Hammerstedt, R.H., 1979, Characterization of sperm surfaces using physical techniques, in: The Spermatozoon ( D. Fawcett and J.M. Bedford, eds.), pp. 205–216, Urban and Schwarzenberg, Baltimore.Google Scholar
  41. Hammerstedt, R.H., and Amann, R.P., 1976, Effects of physiological levels of exogenous steroids on metabolism of testicular, cauda epididymal and ejaculated bovine sperm, Biol. Reprod. 15: 678.CrossRefGoogle Scholar
  42. Hammerstedt, R.H., and Hay, S.R., 1980, Effect of incubation temperature on motility and cAMP content of bovine sperm, Arch. Biochem. Biophys. 199: 427.CrossRefGoogle Scholar
  43. Hammerstedt, R.H., Keith, A.D., Boltz, R.C., Jr., and Todd, P.W., 1979a, Use of amphiphilic spin labels and whole cell isoelectric focusing to assay charge characteristics of sperm surfaces, Arch. Biochem. Biophys. 194: 565.CrossRefGoogle Scholar
  44. Hammerstedt, R.H., Keith, A.D., Hay, S., DeLuca, N., and Amann, R.P., 1979b, Changes in ram sperm membranes during epididymal transit, Arch. Biochem. Biophys. 196: 7.CrossRefGoogle Scholar
  45. Harris, M.E., and Bartke, A., 1974, Concentration of testosterone in testis fluid of the rat,Endocrinology 95: 701.Google Scholar
  46. Hartree, E.F., and Mann, T., 1961, Phospholipids in ram semen: Metabolism of plasmalogen and fatty acids, Biochem. J. 80: 464.Google Scholar
  47. Hiipakka, R.A., and Hammerstedt, R.H., 1978a, 2-Deoxyglucose transport and phosphorylation by bovine sperm, Biol. Reprod. 19: 368.CrossRefGoogle Scholar
  48. Hiipakka, R.A., and Hammerstedt, R.H., 1978b, Changes in 2-deoxyglucose transport during epididymal maturation of ram sperm, Biol. Reprod. 19: 1030.CrossRefGoogle Scholar
  49. Holtz, W., and Foote, R.W., 1974, Cannulation and recovery of spermatozoa from the rabbit ductus deferens, J. Reprod. Fertil. 39: 89.CrossRefGoogle Scholar
  50. Hoskins, D.D., and Casillas, E.R., 1975, Hormones, second messengers, and the mammalian spermatazoan, Adv. Sex Horm. Res. 1: 283.Google Scholar
  51. Hutson, S.M., Van Dop, C., and Lardy, H.A., 1977, Mitochondrial metabolism of pyruvate in bovine spermatozoa, J. Biol. Chem. 252: 1309.Google Scholar
  52. Jarrett, LG., Clark, D.G., Filsell, O.H., Harvey, J.W., and Clark, M.G., 1979, The application of microcalorimetry to the assessment of metabolic efficiency in isolated rat hepatocytes, Biochem. J. 180: 631.Google Scholar
  53. Johnson, L.A., and Purse!, V., 1975, Cannulation of the ductus deferens of the boar: A surgical technique, Am. J. Vet. Res. 36: 315.Google Scholar
  54. Jones, C.W., 1979, Energy metabolism in aerobes, in: International Review of Biochemistry: Microbial Biochemistry, Vol. 21 ( J.R. Quayle, ed.), pp. 49–84, University Park Press, Baltimore.Google Scholar
  55. Kemp, R.B., 1975, Microcalorimetric studies of tissue cells and bacteria, Pestic. Sci. 6: 311.CrossRefGoogle Scholar
  56. Lam, D.M.K., Furrer, R., and Bruce, W.R., 1970, The separation, physical characteriza-tion, and differentiation kinetics of spermatogonial cells of the mouse, Proc. Natl.Acad. Sci. U.S.A. 65: 192CrossRefGoogle Scholar
  57. Lamanna, C., 1963, Endogenous metabolism with special reference to bacteria, Ann. N. Y. Acad. Sci. 102: 515.Google Scholar
  58. Lamprecht, A., 1976, Application of calorimetry to the evaluation of metabolic data for whole organisms, Biochem. Soc. Trans. 4: 565.Google Scholar
  59. Lardy, H.A., and Phillips, P.H., 1941a, The interrelation of oxidative and glycolytic processes as sources of energy for bull spermatozoa, Am. J. Physiol. 133: 602.Google Scholar
  60. Lardy, H.A., and Phillips, P.H., 194lb, Phospholipids as a source of energy for motility of bull spermatozoa, Am. J. Physiol. 134: 542.Google Scholar
  61. Lee, I.P., and Dixon, R.L., 1972, Antineoplastic drug effects on spermatogenesis studied by velocity sedimentation cell separation, Toxicol. Appl. Pharmacol. 23: 20.CrossRefGoogle Scholar
  62. Liu, Y.T., and Warme, P.K., 1977, Computerized evaluation of sperm cell motility, Comput. Biomed. Res. 10: 1465.CrossRefGoogle Scholar
  63. Loir, M., and Lanneau, M., 1974, Separation of ram spermatids by sedimentation at unit gravity, Exp. Cell Res. 83: 319.CrossRefGoogle Scholar
  64. Loir, M., and Lanneau, M., 1977, Separation of mammalian spermatids, in: Methods in Cell Biology, Vol. XV (D.M. Prescott, ed.), Chapter 3, pp. 55–77, Academic Press, New York.Google Scholar
  65. Mann, T., 1964, Biochemistry of Semen and the Male Reproductive Tract, Methuen, London.Google Scholar
  66. Martig, R.C., and Almquist, J.O., 1969, Reproductive capacity of beef bulls. III. Postpuberal changes in fertility and sperm morphology at different ejaculation frequencies, J. Anim. Sci. 28: 375.Google Scholar
  67. Meistrich, M.L., 1972, Separation of mouse spermatogenic cells by velocity sedimentation, J. Cell. Physiol. 80: 299.CrossRefGoogle Scholar
  68. Meistrich, M.L., 1977, Separation of spermatogenic cells from rodent testes, in: Methods in Cell Biology, Vol. XV (D.M. Prescott, ed.), Chapter 2, pp. 16–54, Academic Press, New York.Google Scholar
  69. Meistrich, M.L., and Trostle, Y.K., 1975, Separation of mouse testis cells by equilibrium density centrifugation in renografin gradients, Exp. Cell Res. 92: 231.CrossRefGoogle Scholar
  70. Midelfort, C.F., and Rose, I.A., 1976, A stereochemical method for detection of ATP terminal phosphate transfer in enzymatic reactions, J. Biol. Chem. 251: 5881.Google Scholar
  71. Milkowski, A.L., and Lardy, H.A., 1977, Factors affecting the redox state of bovine epididymal spermatozoa, Arch. Biochem. Biophys. 181: 270.CrossRefGoogle Scholar
  72. Mills, S.C., and Scott, T.W., 1969, Metabolism of fatty acids by testicular and ejaculated ram spermatozoa, J. Reprod. Fertil. 18: 367.CrossRefGoogle Scholar
  73. Morton, B.E., and Lardy, H.A., 1967a, Cellular oxidative phosphorylation. I. Measurement in intact spermatozoa and other cells, Biochemistry 6: 43.CrossRefGoogle Scholar
  74. Morton, B.E., and Lardy, H.A., 19676, Cellular oxidative phosphorylation. II. Measurement in physically modified spermatozoa, Biochemistry 6: 50.Google Scholar
  75. Morton, B.E., and Lardy, H.A., 1967e, Cellular oxidative phosphorylation. III. Measurement in chemically modified cells, Biochemistry 6: 57.CrossRefGoogle Scholar
  76. Nakamura, M., and Hall, P.F., 1976, Inhibition by 5-thio-D-glucopyranose of protein biosynthesis in vitro in spermatids from rat testis, Biochem. Biophys. Acta 447: 474.CrossRefGoogle Scholar
  77. Nakamura, M., and Hall, P.F., 1977, Effect of 5-thio-D-glucose on protein synthesis in vitro by various types of cells from rat testes, J. Reprod. Fertil. 49: 395.CrossRefGoogle Scholar
  78. Niehaus, W.G., Jr., and Hammerstedt, R.H., 1976, Mode of orthophosphate uptake and ATP labeling by mammalian cells, Biochim. Biophys. Acta 443: 515.Google Scholar
  79. Niel, A.R., and Masters, C.J., 1972, Metabolism of fatty acids by bovine spermatozoa, Biochem. J. 127: 375.Google Scholar
  80. Orgebin-Crist, M.-C., Danzo, B.J., and Davies, J., 1975, Endocrine control of the development and maintenance of sperm fertilizing ability in the epididymis, in: Handbook of Physiology, Section 7, Endocrinology, Vol. V, Male Reproductive System ( D.W. Hamilton and R.O. Greep, eds.), pp. 319–338, American Physiological Society, Washington, D.C.Google Scholar
  81. Quinn, P.J., and White, I.G., 1967, Phospholipid and cholesterol content of epididymal and ejaculated ram spermatozoa and seminal plasma in relation to cold shock, Aust. J. Biol. Sci. 20: 1205.Google Scholar
  82. Rambeck, W., Wacker, H., and Simon, H., 1971, Ausmass des glykolytischen Abbaus zelleigenir Reservestoffe in verarmter Hefe bei Glucose-gabe, Z. Physiol. Chem. 352: 59.CrossRefGoogle Scholar
  83. Rikmenspoel, R., 1965, The tail movement of bull spermatozoa: Observations and model calculations, Biophys. J. 5: 365.CrossRefGoogle Scholar
  84. Romrell, L.J., Bellvé, A.R., and Fawcett, D.W., 1976, Separation of mouse spermatogenic cells by sedimentation velocity, Der. Biol. 49: 119.Google Scholar
  85. Rothschild, L., 1962, Anaerobic heat production and fructolysis of bull spermatozoa at different temperatures, J. Exp. Biol. 39: 387.Google Scholar
  86. Rottensten, K., 1972, Alderens indflydelse ph tyrenes frugtbarhed, The Royal Veterinary and Agricultural University Sterility Research Institute Annual Report, p. 219.Google Scholar
  87. Salhanick, A.I., and Terner, C., 1979, Androgen synthesis in absence of Leydig and Sertoli cells in a germ cell fraction from rat seminiferous tubules, Biol. Reprod. 21: 293.Google Scholar
  88. Salisbury, G.W., and Lodge, J.R., 1962, Metabolism of spermatozoa, Adv. Enzymol. 24: 35.Google Scholar
  89. Schaarschmidt, B., and Lamprecht, I., 1976, Calorimetric characterization of microorga-nisms, Experientia 32: 1230.Google Scholar
  90. Scott, T.W., Voglmayr, J.K., and Setchell, B.P., 1967, Lipid composition and metabolism in testicular and ejaculated ram spermatozoa, Biochem. J. 102: 456.Google Scholar
  91. Setchell, B.P., 1978, The Mammalian Testis, Cornell University Press, Ithaca, New York.Google Scholar
  92. Sexton, T.J., Amann, R.P., and Flipse, R.J., 1971, Free amino acids and protein in rete testis fluid, vas deferens plasma, accessory sex gland fluid, and seminal plasma of the conscious bull, J. Dairy Sci. 54: 412.CrossRefGoogle Scholar
  93. Snedecor, G.W., and Cochran, W.G., 1969, Statistical Methods, 6th Ed., p. 27, Iowa State University Press, Ames.Google Scholar
  94. Spink, C., and Wadsö, 1., 1975, Calorimetry as an analytical tool in biochemistry and biology, in: Methods of Biochemical Analysis, Vol. 23 (D. Glick, ed.), pp. 2–159, John Wiley, New York.Google Scholar
  95. Storey, B.T., and Kayne, F.J., 1977, Energy metabolism of spermatozoa. VI. Direct intramitochondrial lactate oxidation by rabbit sperm mitochondria, Biol. Reprod. 16: 549.Google Scholar
  96. Tadmor, A., and Schindler, H., 1966, Establishment of a fistula in the vas deferens of rams, !sr. J. Agric. Res., p. 157.Google Scholar
  97. Thauer, R.K., Jungermann, K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41: 100.Google Scholar
  98. Tischner, M., 1967, Cyklicznosc przesuwania sie plemnikow przez przetoke nasieniowodu tryka (Cyclicity in spermatozoa transport through a listulated vas deferens in the ram), Acta Biol. Cracov. Ser. Zool. 10: 283.Google Scholar
  99. Van Dop, C., Hutson, S.M., and Lardy, H.A., 1977, Pyruvate metabolism in bovine epididymal spermatozoa, J. Biol. Chem. 252: 1303.Google Scholar
  100. Voglmayr, J.K., 1975, Metabolic changes in spermatozoa during epididymal transit, in: Handbook of Physiology, Section 7, Endocrinology, Vol. V, Male Reproductive System ( D.W. Hamilton and R.O. Greep, eds.), pp. 437–452, American Physiological Society, Washington, D.C.Google Scholar
  101. Voglmayr, J.K., Musto, N.A., Saksena, S.K., Brown-Woodman, P.D.C., Marley, P.B., and White, I.G., 1977, Characteristics of semen collected from the cauda epididymidis of conscious rams, J. Reprod. Fertil. 49: 245.CrossRefGoogle Scholar
  102. Wadsö, I., 1976, A system of micro-calorimeters and its use in biochemistry and biology, Biochem. Soc. Trans. 4: 561.Google Scholar
  103. Waites, G.M.H., 1977, Fluid secretion, in: The Testis, Vol. IV (A.D. Johnson and W.R. Gomes, eds.), pp. 91–123, Academic Press, New York.Google Scholar
  104. Waites, G.M.H., and Einer-Jensen, N., 1974, Collection and analysis of rete testis fluid from macaque monkeys, J. Reprod. Fertil. 41: 505.CrossRefGoogle Scholar
  105. White, I.G., 1957, Metabolism of glycerol and similar compounds by bull spermatozoa, Amer. J. Physiol. 189: 307.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Roy H. Hammerstedt
    • 1
  1. 1.Paul M. Althouse Laboratory, Biochemistry Graduate Program, Department of Microbiology, Cell Biology, Biochemistry and BiophysicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations