Electrical Conductivity in Liquids of Geological and Industrial Interest

  • Stuart I. Smedley


The electrical conductivity of geological liquids is usually studied for the purpose of gaining information about the composition of the system or the structure of the liquid. Three types of geological liquids will be referred to in this chapter: the sea, geothermal waters, and magmas or silicate melts.


Molten Salt Molar Conductivity Geothermal Water Industrial Interest Internal Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Goldberg, ed., The Sea, Vol. 5, Marine Chemistry, Wiley- Interscience, New York (1974).Google Scholar
  2. 2.
    F. J. Millero, in The Sea (D. Goldberg, ed.), Vol. 5, Wiley-Interscience, New York (1974).Google Scholar
  3. 3.
    Ninth report of the joint panel on oceanographic tables and standards. UNESCO Technical Papers in Marine Science, No. 30, Paris, 11–13 September 1978, UNESCO (1979).Google Scholar
  4. 4.
    M-S. Chen and L. Onsager, The generalized conductance equation, J. Phys. Chem. 81, 2017–2021 (1977).CrossRefGoogle Scholar
  5. 5.
    R. A. Cox, in Chemical Oceanography ( J. P. Riley and G. Skinrow, eds.), Academic Press, London (1965), pp. 73–120.Google Scholar
  6. 6.
    C. T. Chen and F. J. Millero, The specific volume of sea water at high pressures, Deep-Sea Res. 23, 595–612 (1976).Google Scholar
  7. 7.
    D. N. Connors and P. K. Weyl, The partial equivalent conductance of salts in seawater and the density conductance relationship, Limnol. Oceanog. 13, 35–50 (1968).CrossRefGoogle Scholar
  8. 8.
    D. A. Lown and H. R. Thirsk, Proton transfer conductance in aqueous solution; Part 1, Conductance of concentrated aqueous alkali metal hydroxide solutions at elevated temperatures and pressures, Trans. Faraday Soc. 67, 132–148 (1971).CrossRefGoogle Scholar
  9. 9.
    S. K. Fellows, High temperature conductance of concentrated salt solutions, Ph.D. Thesis, Victoria University of Wellington, New Zealand (1971).Google Scholar
  10. 10.
    R. A. Home and R. P. Young, The electrical conductivity of aqueous 0.03 to 4.0 M potassium chloride solutions under hydrostatic pressure, J. Phys. Chem. 71, 3824–3832 (1967).CrossRefGoogle Scholar
  11. 11.
    J. U. Hwang, H. D. Ludemann, and D. Hartmann, Die elektrische Leitfahigkeit konzentrierter wassriger Alkalihalogenidlosungen bei hohen Drucken und Temperaturen, High Temperatures-High Pressures 2, 651–669 (1970).Google Scholar
  12. 12.
    A. Bradshaw and K. E. Schleicher, The effect of pressure on the electrical conductance of sea water, Deep-Sea Res. 12, 151–162 (1965).Google Scholar
  13. 13.
    F. H. Fisher, Multistate dissociation and the effect of pressure on the equilibrium on magnesium sulfate, J. Phys. Chem. 69, 695–698 (1965).CrossRefGoogle Scholar
  14. 14.
    F. H. Fisher, and A. P. Fox, KSO4-, NaSO4-, and MgCl>+ ion pairs in aqueous solutions up to 2000 atm, J. Solution Chem. 6, 641–650 (1977).CrossRefGoogle Scholar
  15. 15.
    A. J. Ellis and W. A. J. Mahon, Chemistry and Geothermal Systems, Academic Press, New York (1977).Google Scholar
  16. 16.
    B. S. Smolyakov, Limiting Equivalent Ionic Conductance up to 200°C, International Conference on High Temperature and High Pressure Electrochemistry in Aqueous Solutions, University of Surrey (1973), pp. 177–181.Google Scholar
  17. 17.
    W. L. Marshall, Predictions of the geochemical behaviour of aqueous electrolytes at high temperatures and pressures, Chemical Geology 10, 56–58 (1972).CrossRefGoogle Scholar
  18. 18.
    A. J. Ellis and D. W. Anderson, The effect of pressure on the first acid dissociation constants of “sulphurous” and phosphoric acids, J. Chem Soc. 342, 1765–1767 (1961).CrossRefGoogle Scholar
  19. 19.
    A. J. Ellis and D. W. Anderson, The first acid dissociation constant of hydrogen sulphide at high pressures, J. Chem. Soc. 917, 4678–4680 (1961).Google Scholar
  20. 20.
    A. J. Ellis, The effect of pressure on the first dissociation constant of “carbonic acid,” J. Chem. Soc. 750, 3689–3699 (1959)CrossRefGoogle Scholar
  21. (b).
    A. J. Read, The first ionization constant of carbonic acid from 25 to 250°C and to 2000 bar, J. Solution Chem. 4, 53–70 (1975).CrossRefGoogle Scholar
  22. 21.
    S. D. Hamann, Physico-chemical Effects of Pressure, Butterworths, London (1957).Google Scholar
  23. 22.
    R. W. Henly and A. McNabb, Magmatic vapor plumes and ground water interaction in porphyry copper emplacement, Economic Geology 73, 1–19 (1978).CrossRefGoogle Scholar
  24. 23.
    H. S. Waff, Theoretical consideration of electrical conductivity in a partially molten mantle and implications for geothermometry, J. Geophys. Res. 79, 4003–4010 (1974).CrossRefGoogle Scholar
  25. 24.
    J. O’M. Bockris, J. A. Kitchener, S. Ignatowicz, and J. W. Tomlinson, The electrical conductivity of silicate melts: Systems containing Ca, Mn and Al, Discuss. Faraday Soc. 4, 265–281 (1948).CrossRefGoogle Scholar
  26. 25.
    J. O’M. Bockris, J. A. Kitchener, S. Ignatowicz, and J. W. Tomlinson, Electric conductance in liquid silicates, Trans. Faraday Soc. 48, 75–91 (1952).CrossRefGoogle Scholar
  27. 26.
    J. O’M. Bockris, J. A. Kitchener, and A. E. Davies, Electric transport in liquid silicates, Trans. Faraday Soc. 48, 536–548 (1951).CrossRefGoogle Scholar
  28. 27.
    J. O’M. Bockris and G. W. Mellors, Electric conductance in liquid lead silicates and borates, J. Phys. Chem. 60, 1321–1328 (1956).CrossRefGoogle Scholar
  29. 28.(a)
    R. E. Tickle, The electrical conductance of molten alkali silicates, I, Experiments and results, Phys. Chem. Glasses 8, 101–112 (1967)Google Scholar
  30. (b).
    R. E. Tickle, The electrical conductance of molten alkali silicates, II, Theoretical discussion, Phys. Chem. Glasses 8, 113–124(1967).Google Scholar
  31. 29.
    H. S. Waff and D. F. Weill, Electrical conductivity of magmatic liquids, effects of temperature, oxygen fugacity and composition, Earth Planet. Sci. Lett. 28, 254–260 (1975).CrossRefGoogle Scholar
  32. 30.
    H. Watanabe, Measurements of electrical conductivity of basalt at temperatures up to 1500°C and pressure to about 20 kilobars, Spec. Contr. Geophys. Inst. Kyoto Univ. 10, 159–170 (1970).Google Scholar
  33. 31.
    N. T. Khitarov and A. V. Slutsky, Influence de la temperature et de la pression sur la conductibilité electrique de l’albite et du basalte, J. Chim. Phys. et Phys. Chim. 64, 1085–1091 (1967).Google Scholar
  34. 32.
    I. Kushiro, Viscosity and structural changes of albite (NaA1Si3O8) melt at high pressures, Earth Planet Sci. Lett. 41, 87–90 (1978).CrossRefGoogle Scholar
  35. 33.
    I. Kushiro, Changes in viscosity and structure of melt of NaA1Si2O6 composition at high pressures, J. Geophys. Res. 81, 6347–6350 (1976).CrossRefGoogle Scholar
  36. 34.
    I. Kushiro, H. S. Yodder, and B. O. Mysen, Viscosities of basalt and andesite melts at high pressures, J. Geophys. Res. 81, 6351–6356 (1976).CrossRefGoogle Scholar
  37. 35.
    E. B. Lebedev and N. I. Khitarov, Influence of water on the electrical conductivity of silicate melts at high pressures, High Temperature High Pressure Electrochemistry in Aqueous Solutions N.A.C.E. at University of Surrey, England (1973).Google Scholar
  38. 36.
    A. T. Kuhn, ed., Industrial Electrochemical Processes, Elsevier, Amsterdam (1971).Google Scholar
  39. 37.
    C. E. Bowen, Production of H2 and O2 by electrolysis of H20, Proc. Institution of Electrical Engineers 90, 474–485 (1943).Google Scholar
  40. 38.
    C. A. Angell, Electrical conductance of ionic liquids with water contents in the range 0–80 mol.%, Aust. J. Chem. 23, 929–937 (1970).CrossRefGoogle Scholar
  41. 39.
    D. A. Lown and H. R. Thirsk, Proton transfer conductance in aqueous solution, Parts 1 and 2, Trans. Faraday Soc. 67, 132–152 (1971).CrossRefGoogle Scholar
  42. 40.
    A. Reger, E. Peled, and E. Gileadi, Mechanism of high conductivity in a medium of low dielectric constant, J. Phys. Chem. 83, 873–879 (1979).CrossRefGoogle Scholar
  43. 41.
    A. Reger, E. Peled, and E. Gileadi, Determination of the nature of the ionic species in a low dielectric constant solvent from Transference number measurements, J. Phys. Chem. 83, 869–873 (1979).CrossRefGoogle Scholar
  44. 42.
    C. T. Moynihan, in Ionic Interactions (S. Petrucci, ed.), Vol. 1, Academic Press, New York (1971), Chapter 5.Google Scholar
  45. 43.
    C. T. Moynihan and R. W. Laity, Relative cation mobilities in potassium chloride- lithium chloride melts, J. Phys. Chem. 68, 3312–3317 (1964).CrossRefGoogle Scholar
  46. 44.
    E. R. Van Artsdalen and I. S. Yaffe, Electrical conductance and density of molten salt systems: KCl-LiCl, KCl-NaCl and KCl-KI, J. Phys. Chem. 59, 118–127 (1955).CrossRefGoogle Scholar
  47. 45.
    W. K. Behl and J. J. Egan, Transference numbers and ionic mobilities from electromotive force measurements on molten salt mixtures, J. Phys. Chem. 71, 1764–1769 (1967).CrossRefGoogle Scholar
  48. 46.
    H. H. Emons and H. Vogt, On the structure of charge-unsymmetrical salt melts of alkaline earth and alkali metal chlorides, Z. Anorg. Allg. Chem. 394, 279–289 (1972).CrossRefGoogle Scholar
  49. 47.
    D. S. Patterson and M. Chance, Production of sodium, British Patent No. 918, 809 (1963).Google Scholar
  50. 48.
    Jacques van Diest, Process for the manufacture of sodium by electrolysis of fused salt bath, U.S. Patent No. 3, 051, 635 (1960).Google Scholar
  51. 49.
    A. V. Tomashov, V. A. Nichkov, A. E. Mordovin, and R. S. Khailikov, Interaction of potassium chlorides and beryllium chloride in melts and their mixtures, Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metall. 5, 81–85 (1975).Google Scholar
  52. 50.
    K. Grjotheim, C. Krohn, M. Malinovsky, K. Matiasovsky, and J. Thonstad, Aluminium Electrolysis, Aluminium-Verlag GmbH, Düsseldorf (1977).Google Scholar
  53. 51.
    E. W. Yim and M. Feinleib, Electrical conductivity of molten fluorides, J. Electrochem. Soc. 104, 626–630 (1957).CrossRefGoogle Scholar
  54. 52.
    K. Gijotheim, M. Malinovsky, and K. Matiasovsky, The effect of different additives on the conductivity of cryolite-alumina melts, J. Metals 21, 28–33 (1969).Google Scholar
  55. 53.
    Chemistry Division, DSIR, Petone, New Zealand.Google Scholar
  56. 54.
    S. H. Wilson, Waiotapu Geothermal Field, New Zealand Department of Scientific and Industrial Research Bulletin 155 (1963a), pp. 87–118.Google Scholar
  57. 55.
    W. F. Giggenbach, The chemistry of Crater Lake, Mt. Ruapehu (New Zealand) during and after the 1971 active period, N.Z. J. Sci. 17, 33–45 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Stuart I. Smedley
    • 1
  1. 1.Victoria University of WellingtonWellingtonNew Zealand

Personalised recommendations