Advertisement

Electrical Conductivity in Ionic Liquids at High Temperatures

  • Stuart I. Smedley

Abstract

This chapter will be concerned with the discussion of ionic conductivity in ionized molten salts at temperatures well above T0. At very high temperatures and low densities the fate of most ionic liquids is to become molecular, with a consequent drop in conductivity. The discussion of this phenomenon and of melts that are extensively molecular even at their melting points will be delayed to the next chapter. An ionic melt possesses a high number of charge carriers per unit volume, and if these are mobile the conductivity will be high. Klemm has defined an ionic melt as one whose conductivity K >10-3 S cm-1. This definition is quite arbitrary, but it does seem to include most melts that are regarded as being predominantly ionized. A notable exception, for example, is the tetraalkyl ammonium tetrafluoroborate salts.

Keywords

Ionic Liquid Friction Coefficient Molten Salt Pair Potential Pair Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Milton Blander, ed., Molten Salt Chemistry, Interscience, New York (1964).Google Scholar
  2. 2.
    B. R. Sundheim, ed., Fused Salts, McGraw-Hill, New York (1964).Google Scholar
  3. 3.
    G. Mamontov, ed., Molten Salts, Marcel Dekker, New York (1969).Google Scholar
  4. 4.
    J. L. Copeland, Transport Properties of Ionic Liquids, Gordon and Breach Science, New York (1974).Google Scholar
  5. 5.
    C. T. Moynihan, in Mass Transport in Fused Salts (S. Petrucci, ed.), Vol. 1, Ionic Interactions, Academic Press, New York (1971), Chapter 5.Google Scholar
  6. 6.
    G. J. Janz, C. Solomons, and H. J. Gardner, Physical properties and constitution of molten salts, Chem. Revs. 58, 461–508 (1958).CrossRefGoogle Scholar
  7. 7.
    G. J. Janz and R. D. Reeves, Molten-salt electrolytes, Adv. Electrochem. Electrochem. Eng. 5, 137–204 (1967).Google Scholar
  8. 8.
    D. Inman, A. D. Graves, and R. S. Sethi, Electrochemistry of molten salts, Electrochemistry 1, 166–222 (1968–1969).Google Scholar
  9. 9.(a)
    D. Inman, A. D. Graves, and A. A. Nobile, Electrochemistry of molten salts, Electrochemistry 2, 61–116 (1972)CrossRefGoogle Scholar
  10. (b).
    D. Inman, J. E. Bowling, D. G. Löveling, and S. H. White, Electrochemistry of molten salts, Electrochemistry 4, 78–166 (1974).CrossRefGoogle Scholar
  11. 10.
    J. W. Tomlinson, in Electrochemistry: The Past Thirty and the Next Thirty Years ( H. Bloom and F. Gutmann, eds.), Plenum, New York (1977), pp. 335–350.Google Scholar
  12. 11.
    K. Tödheide, Molten salts at high temperatures and high pressures, Proceedings International Symposium of Molten Salts, Washington, D.C. (1976), pp. 20–35.Google Scholar
  13. 12.
    C. J. Janz, F. W. Dampier, and P. K. Lorentz, Molten Salts: Electrical conductance density and viscosity data, Rensselaer Polytechnic Institute, Troy, N.Y. (1966).Google Scholar
  14. 13.
    B. Cleaver, S. I. Smedley, and P. N. Spencer, Effect of pressure on electrical conductivities of fused alkali metal halides and silver halides, J. Chem. Soc., Faraday Trans. 168, 1720–1734(1972).Google Scholar
  15. 14.
    J. E. Bannard, A. F. M. Barton, and G. J. Hills, Transport parameters for the molar electrical conductivities of molten alkali nitrates at high pressures, High Temperatures- High Pressures 3, 65–80 (1971).Google Scholar
  16. 15.
    R. Schamm and K. Tödheide, The electrolyte conductivity of molten sodium nitrite, potassium nitrite and sodium chlorate at pressures up to 6 kbar, High Temperatures- High Pressures 8, 59–64 (1976).Google Scholar
  17. 16.
    B. Cleaver, S. I. Smedley, and P. N. Spencer, in Atomic Transport in Solids and Liquids ( A. Lodding and T. Lagerwall, eds.), Verlag der Zeitschrift für Naturforschung, Tübingen (1971), pp. 355–359.Google Scholar
  18. 17.
    A. S. Quist, A. Würflinger, and K. Tödheide, Electrical conductivity of alkali nitrate molten salts at high pressure: 1. The pressure range up to 5.5 kbar, Ber. Bunsenges Phys. Chem. 76, 652–661 (1972).Google Scholar
  19. 18.
    G. Schlichtharle, K. Tödheide, and E. U. Franck, Die elektrische Leitfahgkeit geschmolzener Alkalinitrate bei hohen Drucken: II. Der Druckbereich bis 12 kbar, Ber. Bunsenges. Phys. Chem. 76, 1168–1175 (1972).Google Scholar
  20. 19.
    A. F. M. Barton and R. J. Speedy, Simultaneous conductance and volume measurements on molten salts at high pressure, J. Chem. Soc. Faraday Trans. I, 70, 506–527 (1974).CrossRefGoogle Scholar
  21. 20.
    V. Pilz and K. Todheide, Electrical conductance of molten alkali nitrates at high pressures: Pressures up to 55 kbars, Ber. Bunsenges. Phys. Chem. 77, 29–36 (1973).Google Scholar
  22. 21.
    S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York (1941).Google Scholar
  23. 22.
    J. O’M. Bockris, J. A. Kitchener, S. Ignatowicz, and J. W. Tomlinson, Electric conductance in liquid silicates, Trans. Faraday Soc. 48, 75–91 (1952).CrossRefGoogle Scholar
  24. 23.
    M. Goldstein, Viscous liquids and the glass transition: A potential energy barrier picture, J. Chem. Phys. 51, 3728–3739 (1969).CrossRefGoogle Scholar
  25. 24.
    B. J. Alder and T. Einwohner, Free-path distribution for hard spheres, J. Chem. Phys. 43, 3399–3400 (1965).CrossRefGoogle Scholar
  26. 25.
    S. I. Smedley and L. V. Woodcock, Kirkwood-Rice-Allnatt kinetic theory of transport in liquids, J. Chem. Soc. Faraday Trans. II 69, 955–966 (1973).Google Scholar
  27. 26.(a)
    R. Fürth, The theory of the liquid state, Proc. Cambridge Phil. Soc. 37, 252–280 (1941)CrossRefGoogle Scholar
  28. (b).
    R. Fürth, The hole theory of viscous flow, Proc. Cambridge Phil. Soc. 37, 281–240(1941).Google Scholar
  29. 27.
    J. O’M. Bockris, E. H. Crook, H. Bloom, and N. E. Richards, The electric conductance of simple molten salts, Proc. Roy. Soc. London A255, 558–578 (1960).CrossRefGoogle Scholar
  30. 28.
    T. Emi and J. O’M. Bockris, Semiempirical calculation of 3.1RT m term in the heat of activation for viscous flow of ionic liquid, J. Phys. Chem. 74, 159–163 (1970).CrossRefGoogle Scholar
  31. 29.
    H. Eyring and M. S. Jhon, Significant Liquid Structures, John Wiley & Sons, New York (1969).Google Scholar
  32. 30.
    D. Henderson and W. Jost, in Physical Chemistry, An Advanced Treatise (H. Eyring, ed.), Vol. VIIIA, Academic Press, New York (1971), Chapter 5.Google Scholar
  33. 31.
    W-C. Lu, T. Ree, V. G. Gerrard, and H. Eyring, Significant-structure theory applied to molten salts, J. Chem. Phys. 49, 797–804 (1968).CrossRefGoogle Scholar
  34. 32.
    J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, New York (1976).Google Scholar
  35. 33.
    B. Berne and S. A. Rice, On the kinetic theory of dense fluids: XVI. The ideal ionic melt, J. Chem. Phys. 40, 1347–1362 (1964).CrossRefGoogle Scholar
  36. 34.
    S. A. Rice and P. Gray, The Statistical Mechanics of Simple Liquids, Interscience, New York (1965).Google Scholar
  37. 35.
    J. G. Kirkwood, The statistical mechanical theory of transport processes: 1. General theory, Chem. Phys. 14, 180–201 (1946).Google Scholar
  38. 36.(a)
    S. A. Rice and A. R. Allnatt, On the kinetic theory of dense fluids: VI. Singlet distribution function for rigid spheres with attractive potential, J. Chem. Phys. 34, 2144–2155 (1961)CrossRefGoogle Scholar
  39. (b).
    A. R. Allnatt and S. A. Rice, On the kinetic theory of dense fluids: VII. The doublet distribution function for rigid spheres with an attractive potential, J. Chem. Phys. 34, 2156–2165 (1961).CrossRefGoogle Scholar
  40. 37.
    S. A. Rice and P. Gray, The Statistical Mechanics of Simple Liquids, Interscience, New York (1965), p. 429.Google Scholar
  41. 38.
    E. Helfand, Theory of the molecular friction constant, Phys. Fluids 4, 681–691 (1961).CrossRefGoogle Scholar
  42. 39.
    G. Morrison and J. E. Lind, Jr., Friction constants for fused salts, J. Phys. Chem. 72, 3001–3006 (1968).CrossRefGoogle Scholar
  43. 40.
    K. Ichikawa and M. Shimoji, Self-diffusion and viscosity of molten alkali halides, Trans. Faraday Soc. 66, 843–849 (1970).CrossRefGoogle Scholar
  44. 41.
    S. A. Rice, Kinetic theory of ideal ionic melts, Trans. Faraday Soc. 58, 499–510 (1962).CrossRefGoogle Scholar
  45. 42.
    G. J. Janz, ed., Molten Salts Handbook, Academic Press, New York (1967).Google Scholar
  46. 43.
    J. O’M. Bockris, S. R. Richards, and L. Nanis, Self-diffusion and structure in molten Group II chlorides, J. Phys. Chem. 69, 1627–1637 (1965).CrossRefGoogle Scholar
  47. 44.
    R. A. Fisher and R. O. Watts, The friction coefficient formalism in the statistical mechanics of transport processes, Aust. J. Phys. 25, 21–31 (1972).Google Scholar
  48. 45.
    G. Ciccotti, G. Jacucci, and I. R. McDonald, Transport properties of molten alkali halides, Phys. Rev. A 13, 426–436 (1976).CrossRefGoogle Scholar
  49. 46.
    J. P. Hansen and I. R. McDonald, Self-diffusion and electrical conductance in a simple molten salt, J. Phys. C: Solid State Phys. 7, L384–L386 (1974).CrossRefGoogle Scholar
  50. 47.
    J. P. Hansen and I. R. McDonald, Statistical mechanics of dense ionized matter: IV. Density and charge fluctuations in a simple molten salt, Phys. Rev. A, 11, 2111–2123 (1975).CrossRefGoogle Scholar
  51. 48.
    R. W. Laity, Formalisms and models for ionic transport, Faraday Soc. Discuss. 32, 172–180(1961).CrossRefGoogle Scholar
  52. 49.
    R. W. Laity, General approach to the study of electrical conductance and its relation to mass transport phenomena, J. Chem. Phys. 30, 682–691 (1959).CrossRefGoogle Scholar
  53. 50.
    J. W. Tomlinson, in Electrochemistry: The Past Thirty and the Next Thirty Years ( H. Bloom and F. Gutmann, eds.) Plenum, New York (1977), pp. 335–350.Google Scholar
  54. 51.
    M. J. Rice and W. Roth, Ionic transport in super ionic conductors. Theoretical model, J. Solid State Chem. 4, 294–310 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Stuart I. Smedley
    • 1
  1. 1.Victoria University of WellingtonWellingtonNew Zealand

Personalised recommendations