Advertisement

Ionic Conductivity in Dilute Electrolyte Solutions

  • Stuart I. Smedley

Abstract

Dilute electrolyte solutions will be regarded as those which fall into the concentration range where the classical Debye-Hückel model of electrolyte solutions is valid. This model regards ions in an electrolyte as being hard spheres separated by a dielectric continuum whose relative permittivity, e, is that of the pure solvent. In water this model is valid up to 0.001 mol dm -3 for 1: 1 electrolytes.

Keywords

Temperature Coefficient Pressure Coefficient Infinite Dilution Transition State Theory Walden Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Fuoss, The conductance-concentration function for alkali halides in dioxane- water mixtures, Rev. Pure Appl. Chem. 18, 125–136 (1968).Google Scholar
  2. 2.
    F. Kohlrausch and A. Heydweiller, Über reines Wasser, Z. Phys. Chem. 14, 317 (1894).Google Scholar
  3. 3.
    L. Onsager, The theory of electrolytes (I), Physik. Z. 27, 388–392 (1926). The theory of electrolytes (II), Physik. Z. 28, 277–298 (1927).Google Scholar
  4. 4.
    J. Barthel, Conductance of electrolyte solutions, Angew. Chem. 7 (4), 260–277 (1968);CrossRefGoogle Scholar
  5. (b).
    H. Falkenhagen, W. Ebeling, and W. D. Kraeft in Ionic Interactions (S. Petrucci, ed.), Academic Press, New York (1971), pp. 62–116;Google Scholar
  6. (c).
    R. M. Fuoss, in Chemical Physics of Ionic Solutions (B. E. Conway and R. G. Barradas, eds. ), John Wiley & Sons New York (1966), pp. 463–485Google Scholar
  7. (d).
    H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolyte Solutions, Reinhold, New York (1958)Google Scholar
  8. e) Ion-Ion and Ion-Solvent Interactions, Faraday Discussions of the Chemical Society No. 64 (1977)Google Scholar
  9. (f).
    R. Fernandez-Prini, in Physical Chemistry of Organic Solvent Systems ( A. K. Coving and T. Dickinson, eds.), Plenum, London (1973), pp. 525–614.CrossRefGoogle Scholar
  10. 5.
    R. M. Fuoss and F. Accascina, Electrolytic Conductance, Interscience, New York (1959).Google Scholar
  11. 6.
    M-S. Chen, Compatibility of conductance equations with Onsager’s reciprocal relation, J. Phys. Chem. 81, 2022–2023 (1977).CrossRefGoogle Scholar
  12. 7.
    H. Falkenhagen, M. Leist, and G. Kelbg, Theory of the conductivity of strong, nonassociative electrolytes at higher concentrations, Ann. Phys. (Leipzig) 11, 51–59 (1952).Google Scholar
  13. 8.
    E. Pitts, An extension of the theory of the conductivity and viscosity of electrolyte solutions, Proc. Roy. Soc. London Ser. A, 217, 43–70 (1953).CrossRefGoogle Scholar
  14. 9.
    R. M. Fuoss and L. Onsager, Conductance of unassociated electrolytes, J. Phys. Chem. 61, 668–682 (1957).CrossRefGoogle Scholar
  15. 10.
    P. C. Carman, Debye-Hückel relaxation effects in conductance of electrolyte solutions: Trends at higher concentrations, J. S. Afr. Chem. Inst., XXVII, 80–103 (1975).Google Scholar
  16. 11.
    R. M. Fuoss, Conductance-concentration function for the paired ion model, J. Phys. Chem. 82, 2427–2440 (1978).CrossRefGoogle Scholar
  17. 12.
    M-S. Chen, The conductance of mixed strong electrolytes at finite concentration, Ph.D. Thesis, Yale University (1969).Google Scholar
  18. 13.
    P. C. Carman, Logarithmic term in conductivity equation for dilute solutions of strong electrolytes, Phys. Chem. 74, 1653–1654 (1970).CrossRefGoogle Scholar
  19. 14.
    R. Fernandez-Prini and J. E. Prue, A comparison of conductance equations for unassociated electrolytes, Z. Phys. Chem. (Leipzig) 228, 373–379 (1965).Google Scholar
  20. 15.
    J.-C. Justice, An interpretation for the distance parameter of the Fuoss-Onsager conductance equation in the case of ionic association, Electrochim. Acta 16, 701–711 (1971).CrossRefGoogle Scholar
  21. 16.
    E. M. Hanna, A. D. Pethybridge, and J. E. Prue, Ion association and the analysis of precise conductimetric data, Electrochim. Acta. 16, 677–686 (1971).Google Scholar
  22. 17.
    R. M. Fuoss, L. Onsager, and J. F. Skinner, The conductance of symmetrical electrolytes. V. The conductance equation, J. Phys. Chem. 69, 2581–2594 (1965).CrossRefGoogle Scholar
  23. 18.
    R. M. Fuoss and K.-L. Hsia, Association of 1–1 salts in water, Proc. Nat. Acad. Sci. USA. 57, 1550–1557 (1967).CrossRefGoogle Scholar
  24. 19.
    R. Fernandez-Prini, Conductance of electrolyte solutions: A modified expression for its concentration dependence, Trans. Faraday Soc. 65, 3311–3313 (1969).CrossRefGoogle Scholar
  25. 20.
    J. Barthel, J.-C. Justice, and R. Wächter, Untersuchung der elektrischen Leitfähigkeit alkoholischer alkalialkohatlösungen VII. Discussion of the distance parameters with the help of the extended conductance equations, Z. Phys. Chem. (Frankfurt am Main) 84, 100–113 (1973).CrossRefGoogle Scholar
  26. 21.
    R. M. Fuoss, Ionic association. III. The equilibrium between ion pairs and free ions, J. Amer. Chem. Soc. 80, 5059–5061 (1958).CrossRefGoogle Scholar
  27. 22.
    R. M. Fuoss, Derivation of the Justice conductance equation, J. Phys. Chem. 78, 1383–1386(1974).Google Scholar
  28. 23.
    P. Beronius, Remarks on the problem of finding best set conductance parameters for electrolyte solutions, Acta Chem. Scand. Ser. A 30, 115–120 (1976).CrossRefGoogle Scholar
  29. 24.
    S. D. Hamann, Physico-Chemical Effects of Pressure, Butterworth’s Scientific Publications, London (1957).Google Scholar
  30. 25.
    S. B. Brummer and A. B. Gancy, in Water and Aqueous Solutions ( R. A. Hörne, ed.), Wiley-Interscience, New York (1972), pp. 745–770.Google Scholar
  31. 26.(a)
    A. B. Gancy and S. B. Brummer, Conductance of aqueous electrolyte solutions at high pressures, J. Chem. and Eng. Data 16, 385–388 (1971)CrossRefGoogle Scholar
  32. (b).
    A. B. Gancy and S. B. Brummer, The effect of solution concentration on the high-pressure coefficient of ionic conductance, J. Phys. Chem. 73, 2429–2436 (1969).CrossRefGoogle Scholar
  33. 27.
    M. Nakahara, K. Shimizu, and J. Osugi, Ionic solutions under high pressures, III. Pressure and temperature effects on the mobilities of K+ and Cl- ions, Rev. Phys. Chem. Japan 42, 12–25 (1972).Google Scholar
  34. 28.
    R. A. Robinson and R. H. Stokes, Variation of equivalent conductance with concentration and temperature, J. Amer. Chem. Soc. 76, 1991–1994 (1954).CrossRefGoogle Scholar
  35. 29.
    R. M. Fuoss and T. Shedlovsky, Extrapolation of conductance data for weak electrolytes, J. Amer. Chem. Soc. 71, 1496–1498 (1949).CrossRefGoogle Scholar
  36. 30.
    J. F. Cukurins and W. Strauss, Effect of pressures to 3 kbar on the electrical conductivity of tetramethylammonium bromide and hydrobromic acid in propan-1-ol and propan-2-ol, Aust. J. Chem. 29, 249–256 (1976).CrossRefGoogle Scholar
  37. 31.
    W. A. Adams and K. J. Laidler, Electrical conductivities of quaternary ammonium salts in acetone: Part I. Pressure and temperature effects. Part II. The mechanisms of transport, Can. J. Chem. 46, 1977–2011 (1968).CrossRefGoogle Scholar
  38. 32.
    J. F. Skinner and R. M. Fuoss, Effect of pressure on conductance: II. Walden products and ionic association in methanol, J. Phys. Chem. 70, 1426–1433 (1966).CrossRefGoogle Scholar
  39. 33.
    E. Inada, The pressure and temperature effects on the Walden products of Na+, K+, Cs+, and I- in water, Rev. Phys. Chem. Jap. 46, 19–30 (1976).Google Scholar
  40. 34.
    R. M. Fuoss and C. A. Kraus, Properties of electrolytic solutions: XV. Thermodynamic properties of very weak electrolytes, J. Amer. Chem. Soc. 57, 1–4 (1935).CrossRefGoogle Scholar
  41. 35.
    A. H. Ewald and J. A. Scudder, The effect of pressure on the conductance of some iodides in acetone and 2-methylpropan-1-ol, Aust. J. Chem. 23, 1939–1945 (1970).CrossRefGoogle Scholar
  42. 36.
    S. L. Wellington, The effect of pressure and temperature on ionic conductance in 2-propanol, Diss. Abstr. Int. B, 33, 4751 (1973).Google Scholar
  43. 37.
    A. S. Quist and W. L. Marshall, Electrical conductances of aqueous sodium chloride solutions from 0 to 800° and at pressures to 4000 bars, J. Phys. Chem. 72, 684–703 (1968).CrossRefGoogle Scholar
  44. 38.(a)
    A. S. Quist, E. U. Franck, H. R. Jolley, and W. L. Marshall, Electrical conductances of aqueous solutions at high temperature and pressure: I. The conductances of potassium sulfate-water solutions from 25 to 800° and at pressures up to 4000 bars, J. Phys. Chem. 67, 2453–2459 (1963)CrossRefGoogle Scholar
  45. (b).
    A. S. Quist, W. L. Marshall, and H. R. Jolley, Electrical conductances of aqueous solutions at high temperature and pressure: II. The conductances and ionization constants of sulfuric acid-water solutions from 0 to 800° and at pressures up to 4000 bars, J. Phys. Chem. 69, 2726–2735 (1965)CrossRefGoogle Scholar
  46. (c).
    A. S. Quist and W. L. Marshall, Electrical conductances of aqueous solutions at high temperature and pressure: III. The conductances of potassium bisulfate solutions from 0 to 700° and at pressures to 4000 bars, J. Phys. Chem. 70, 3714–3725 (1966)CrossRefGoogle Scholar
  47. (d).
    A. S. Quist and W. L. Marshall, Electrical conductances of aqueous sodium bromide solutions from 0 to 800° and at pressures to 4000 bars, J. Phys. Chem. 72, 2100–2105 (1968)CrossRefGoogle Scholar
  48. (e).
    L. A. Dunn and W. L. Marshall, Electrical conductances of aqueous sodium iodide and the comparative thermodynamic behaviour of aqueous sodium halide solutions to 800° and 4000 bars, J. Phys. Chem. 73, 723–728 (1969)CrossRefGoogle Scholar
  49. (f).
    A. S. Quist and W. L. Marshall, Electrical conductances of aqueous hydrogen bromide solutions from 0 to 800° and at pressures to 4000 bars, J. Phys. Chem. 72, 1545–1552 (1968)CrossRefGoogle Scholar
  50. (g).
    A. S. Quist and W. L. Marshall, Ionization equilibria in ammonia-water solutions to 700° and to 4000 bars of pressure, Phys. Chem. 72, 3122–3128 (1968).CrossRefGoogle Scholar
  51. 39.(a)
    E. U. Franck, Hochverdichteter Wasserdampf: I. Elektrolytische Leitfahigkeit in KCl-H2O-losungen bis 750°C, Z. Phys. Chem. 8, 92–106 (1956)CrossRefGoogle Scholar
  52. (b).
    E. U. Franck, Hochverdichteter Wasserdampf: II. Ionendissoziation von KCl in H2O bis 750°C, Z. Phys. Chem. 8, 107–126 (1956).CrossRefGoogle Scholar
  53. 40.
    K. von Mangold and E. U. Franck, Electrical conductivity of aqueous solutions at high temperatures and pressures: II. Alkali metal chloride in water up to 1000°C and 12 kbar, Ber. Bunsenges Phys. Chem. 73, 21–27 (1969).Google Scholar
  54. 41.
    G. von Ritzert and E. U. Franck, Electrical conductivity of aqueous solutions at high temperatures and pressures: I. Electrolytic conductivity of potassium chloride, barium chloride, barium hydroxide and magnesium sulphate up to 750°C and 6 kbar, Ber. Bunsenges Phys. Chem. 72, 798–808 (1968).Google Scholar
  55. 42.
    E. G. Larionov and P. A. Kryukov, The limiting equivalent conductivity of KCl at temperatures up to 150°C and pressures up to 8000/kg/cm2, International Conference on High Temperature and High Pressure Electrochemistry in Aqueous Solutions, University of Surrey (1973).Google Scholar
  56. 43.
    L. B. Yeatts, L. A. Dunn, and W. L. Marshall, Electrical conductances and ionization behaviour of sodium chloride in dioxane-water solutions at 100° and pressures to 4000 bars, J. Phys. Chem. 75, 1099–1106 (1971).CrossRefGoogle Scholar
  57. 44.
    W. R. Gilkerson, The importance of the effect of the solvent dielectric constant on ion-pair formation in water at high temperatures and pressures, J. Phys. Chem. 74, 746–750 (1970).CrossRefGoogle Scholar
  58. 45.
    R. A Matheson, The thermodynamics of electrolyte equilibria in media of variable water concentration, J. Phys. Chem. 73, 3635–3642 (1969).CrossRefGoogle Scholar
  59. 46.
    R. L. Kay, D. F. Evans, and Sister M. A. Matesich, in Solute-Solvent Interact (J. F. Coetzee and J. F. Ritchie, eds.), Vol. 2, Marcel Dekker, New York (1976), pp. 105–153.Google Scholar
  60. 47.
    a) M. Ueno, M. Nakahara, and J. Osugi, The electrical conductivities of NH4Cl and MenNH4–nCl (n= 1,2,3) in water, Rev. Phys. Chem. Jap. 45, 9–16 (1975)Google Scholar
  61. (b).
    M. Ueno, M. Nakahara, and J. Osugi, The electrical conductivities of EtnNH4-nCl (n=1,2,3) in water, Rev. Phys. Chem. Jap. 45, 17–22 (1975).Google Scholar
  62. 48.
    K. E. Bett and J. B. Cappi, Effect of pressure on the viscosity of water, Nature 207, 620 (1965).CrossRefGoogle Scholar
  63. 49.
    T. S. Burn and H. Hdiland, Pressure dependence of the electric conductance of aqueous solutions of LiCl, KCl and (CH3)4NCl. Correlation of kinetic parameters, Electrochim. Acta, 21, 51–57 (1976).CrossRefGoogle Scholar
  64. 50.
    R. A. Home and R. P. Young, The electrical conductivity of aqueous tetraalkylam- monium halide solutions under hydrostatic pressure, J. Phys. Chem. 72, 1763–1767 (1968).CrossRefGoogle Scholar
  65. 51.
    M. Nakahara, Ionic solutions under high pressures: IV. Effects of pressure on the mobilities and hydration of Bu4N+, Me4N+, K+ and Cl- ions, Rev. Phys. Chem. Jap. 42, 75–84 (1972).Google Scholar
  66. 52.
    F. H. Fisher, The effect of pressure on the equilibrium of magnesium sulfate, J. Phys. Chem. 65, 1607–1611 (1962).CrossRefGoogle Scholar
  67. 53.
    F. H. Fisher and D. F. Davis, The effect of pressure on the dissociation of manganese sulfate ion pairs in water, J. Phys. Chem. 69, 2595–2598 (1965).CrossRefGoogle Scholar
  68. 54.
    F. H. Fisher and A. P. Fox, KSO4-, NaSO4- and MgCl+ ion pairs in aqueous solutions up to 2000 atm, J. Solution Chem. 6, 641–650 (1977).CrossRefGoogle Scholar
  69. 55.
    F. H. Fisher and A. P. Fox, LiSO4-, RbSO4-, CsSO4- and (NH4)SO4- ion pairs in aqueous solutions at pressures up to 2000 atm, J. Solution Chem. 7, 561–570 (1978).CrossRefGoogle Scholar
  70. 56.
    S. D. Hamann, P. J. Pearce, and W. Strauss, The effect of pressure on the dissociation on lanthanum ferricyanide ion pairs in water, J. Phys. Chem. 68, 375–380 (1964).CrossRefGoogle Scholar
  71. 57.
    J. Osugi, K. Shimizu, M. Nakahara, E. Hirayama, Y. Matsubara, and M. Ueno, Aqueous ionic solutions at high pressures, Proceedings 4th International Conference on High Pressures, 610–614 (1974).Google Scholar
  72. 58.
    P. J. Pearce and W. Strauss, Conductances of potassium chloride and tetrabutylam- monium picrate in dioxane-water mixtures at pressures up to 2500 bars, Aust. J. Chem. 23, 905–913 (1970).CrossRefGoogle Scholar
  73. 59.
    S. B. Brummer and G. J. Hills, Kinetics of ionic conductance: Part 2. Temperature and pressure coefficients of conductance, Trans. Faraday Soc. 57, 1823–1837 (1961).CrossRefGoogle Scholar
  74. 60.
    J. F. Skinner and R. M. Fuoss, Effect of pressure on conductance: II. Walden products and ionic association in methanol, J. Phys. Chem. 70, 1426–1433 (1966).CrossRefGoogle Scholar
  75. 61.
    E. L. Cussler and R. M. Fuoss, Effect of pressure on conductance: IV. Ionic association and Walden products in ethanol, J. Phys. Chem. 71, 4459–4463 (1967).CrossRefGoogle Scholar
  76. 62.
    S. B. Brummer, Temperature and pressure coefficients of ionic conductance in N, N- dimethylformamide, J. Chem. Physk. 42, 1636–1646 (1965).CrossRefGoogle Scholar
  77. 63.
    F. Barreira and G. J. Hills, Kinetics of ionic migration, Part 3: Pressure and temperature coefficients of conductance in nitrobenzene,Trans. Faraday Soc. 64, 1359–1375 (1968).CrossRefGoogle Scholar
  78. 64.
    J. F. Skinner and R. M. Fuoss, Effect of pressure on conductance: I. Tetraisoamylam- monium picrate in diethyl ether and in benzene, J. Phys. Chem. 69, 1437–1443 (1965).CrossRefGoogle Scholar
  79. 65.
    M. Eigen and L. De Maeyer, Self-dissociation and protonic charge transport in water and ice, Proc. Roy. Soc. London, A247, 505–533 (1958).CrossRefGoogle Scholar
  80. 66.
    D. A. Lown and H. R. Thirsk, Proton transfer conductance in aqueous solution: Part 1. Conductance of concentrated aqueous alkali metal hydroxide solutions at elevated temperatures and pressures. Part 2. Effect of pressure on the electrical conductivity of concentrated orthophosphoric acid in water at 25 °C, Trans. Faraday Soc. 67, 132–152 (1971).CrossRefGoogle Scholar
  81. 67.
    M. Nakahara and J. Osugi, Ionic solutions under high pressures: VII. Mobility of hydrogen ion in water at 15, 25 and 40°C up to 5000 atm, Rev. Phys. Chem. Jap., 47, 1–11 (1977).Google Scholar
  82. 68.
    K. Todheide, in Water, A Comprehensive Treatise (F. Franks, ed.) Vol. 1, Plenum Press, New York (1972), pp. 463–514.Google Scholar
  83. 69.
    M. Goffredi and T. Shedlovsky, Studies of electrolytic conductance in alcohol-water mixtures: IV. Hydrochloric acid in 1-propanol-water mixtures at 15, 25 and 35°, J. Phys. Chem. 71, 2182–2186 (1967).CrossRefGoogle Scholar
  84. 70.
    S. B. Brummer and G. J. Hills, Kinetics of ionic conductance: Part 1. Energies of activation and the constant volume principle, Trans. Faraday Soc. 57,1816–1822(1971).Google Scholar
  85. 71.
    G. J. Hills, in Chemical Physics of Ionic Solutions ( B. J. Conway and R. G. Barradas, eds.), pp. 521–539, John Wiley & Sons, New York (1966).Google Scholar
  86. 72.
    R. L. Kay, in, Water, A Comprehensive Treatise (F. Franks, ed.), Vol. 3, Plenum Press, New York (1973), pp. 173–209.Google Scholar
  87. 73.
    von M. Born, Uber die Beweglichkeit der elektrolytischen Ionen, Z. fuer Physik 1, 221–249 (1920).CrossRefGoogle Scholar
  88. 74.
    R. M. Fuoss, Dependence of the Walden product on the dielectric constant, Proc. Nat. Acad. Sci. U.S.A. 45, 807–813 (1959).CrossRefGoogle Scholar
  89. 75.
    R. H. Boyd, Letters to the Editor, J. Chem. Phys. 39, 2376 (1963).Google Scholar
  90. 76.
    R. Zwanzig, Dielectric friction on a moving ion: II. Revised theory, J. Chem. Phys. 52, 3625–3628 (1970).CrossRefGoogle Scholar
  91. 77.
    T. L. Broadwater, T. J. Murphy, and D. F. Evans, Conductance of binary asymmetric electrolytes in methanol, J. Phys. Chem. 80, 753–757 (1976).CrossRefGoogle Scholar
  92. 78.
    R. Fernandez-Prini, Ionic conductivities and dielectric friction, J. Phys. Chem. 77, 1314–1315 (1973).CrossRefGoogle Scholar
  93. 79.(a)
    J. Hubbard and L. Onsager, Dielectric dispersion and dielectric friction in electrolyte solutions, I, J. Chem. Phys. 67, 4850–4857 (1977)CrossRefGoogle Scholar
  94. (b).
    J. B. Hubbard, Dielectric dispersion and dielectric friction in electrolyte solutions, II, J. Chem. Phys. 68, 1649–1664 (1978).CrossRefGoogle Scholar
  95. 80.
    D. F. Evans, C. Chan, and B. C. Lamartine, The effect of charge upon mobility. A critical examination of the Zwanzig equation, J. Amer. Chem. Soc. 99, 6492–6496 (1977).CrossRefGoogle Scholar
  96. 81.
    H. S. Frank and W-Y Wen, Ion-solvent interaction III. Structural aspects of ion- solvent interaction in aqueous solutions: A suggested picture of water structure, Discuss. Faraday Soc. 24, 133–140 (1957).CrossRefGoogle Scholar
  97. 82.
    A. Geiger and H. G. Hertz, Proton magnetic relaxation study of water orientation around I- and Li+, J. Solution Chem. 5, 365–388 (1976).CrossRefGoogle Scholar
  98. 83.
    Water, A Comprehensive Treatise (F. Franks, ed.), Vols. 1 and 3, Plenum Press, New York (1973).Google Scholar
  99. 84.
    T. L. Broadwater and R. L. Kay, The temperature coefficient of conductance for the alkali metal, halide, tetraalkylammonium, halate and perhalate ions in D2O, J. Solution Chem. 4, 745–762 (1975).CrossRefGoogle Scholar
  100. 85.
    M. Nakahara and J. Osugi, Ionic solutions under high pressure: VI. Mobilities and hydration of monocarboxylate ions, Rev. Phys. Chem. Jap. 45, 1–8 (1975).Google Scholar
  101. 86.
    F. J. Millero, in Water and Aqueous Solutions ( R. A. Home, ed.), John Wiley & Sons, New York (1972), pp. 519–564.Google Scholar
  102. 87.
    R. A. Home, in Advances in High Pressure Research (R. S. Bradley, ed.), Vol. 2, Academic Press, London (1969), pp. 169–223.Google Scholar
  103. 88.
    Y. Lee and J. Jonas, Effect of pressure on proton spin-lattice relaxation in several concentrated aqueous electrolyte solutions, J. Magnetic Resonance 5, 267–272 (1971).Google Scholar
  104. 89.
    Y. K. Lee, J. H. Campbell and J. Jonas, Effect of pressure on deuteron spin-lattice relaxation in several concentrated deuterium oxide diamagnetic electrolyte solutions, J. Chem. Phys. 60, 3537–3543 (1974).CrossRefGoogle Scholar
  105. 90.
    R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd ed. rev., Butterworths, London (1959), Chapter 6.Google Scholar
  106. 91.
    B. S. Smolyakov, Limiting equivalent ionic conductance up to 200°C, International Conference on High Temperature and High Pressure Electrochemistry in Aqueous Solutions, University of Surrey (1973).Google Scholar
  107. 92.
    V. M. Valyashko, Studies of water-salt systems at elevated temperatures and pressures, Ber. Bunsenges. Phys. Chem. 81, 388–396 (1977).Google Scholar
  108. 93.
    C. Shin and C. M. Criss, Partial molal heat capacities of tetraalkylammonium bromides in methanol from 10 to 50°C, J. Solution Chem. 7, 205–217 (1978).CrossRefGoogle Scholar
  109. 94.
    C. Shin, I. Worsley, and C. M. Criss, Partial molal heat capacities of aqueous tetraalkylammonium bromides as functions of temperature, J. Solution Chem. 5, 867–879 (1976).CrossRefGoogle Scholar
  110. 95.
    A. J. Pasztor and C. M. Criss, Apparent molal volumes and heat capacities of some 1:1 electrolytes in anhydrous methanol at 25°C, J. Solution Chem. 7, 27–43 (1978).CrossRefGoogle Scholar
  111. 96.
    B. Watson and R. L. Kay, see Ref. 72, p. 201.Google Scholar
  112. 97.
    R. L. Kay and T. L. Broadwater, Solvent structure in aqueous mixtures: III. Ionic conductances in ethanol-water mixtures at 10 and 25°C., J. Solution Chem. 5, 57–76 (1976).CrossRefGoogle Scholar
  113. 98.
    T. L. Broadwater and R. L. Kay, Solvent structure in aqueous mixtures: II. Ionic mobilities in tert-butyl alcohol-water mixtures at 25°C, J. Phys. Chem. 74, 3802–3812 (1970).CrossRefGoogle Scholar
  114. 99.
    R. L. Kay and T. L. Broadwater, Solvent structure in aqueous mixtures: I. Ionic mixtures in dioxane-water mixtures at 25°C, Electrochim. Acta 16, 667–676 (1971).CrossRefGoogle Scholar
  115. 100.
    J. O’M. Bockris, J. A. Kitchener, S. Ignatowicz, and J. W. Tomlinson, Electric conductance in liquid silicates, Trans. Faraday Soc. 48, 75–91 (1952).Google Scholar
  116. 101.
    E. G. Larionov, Calculation of maximum electric conductivity of individual ions at high temperatures and pressures, Otdelenie Khimicheskikh Nauk, Akademiia Nauk, Novosibirsk, SSSR (1977), pp. 10–19.Google Scholar
  117. 102.
    M.-C. and J.-C. Justice and R. Bury, Electrochim. Acta 16, 687–700 (1971).Google Scholar
  118. 103.
    D. F. Evans, C. Zawoski, and R. L. Kay, J. Phys. Chem. 69, 3878–3885 (1965).CrossRefGoogle Scholar
  119. 104.
    E. M. Hanna, A. D. Pethybridge, and J. E. Prue, Electrochim. Acta. 16, 677–686 (1971).CrossRefGoogle Scholar
  120. 105.
    P. C. Carman, J. Solution Chem. 6, 609–624 (1977).CrossRefGoogle Scholar
  121. 106.
    R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths, London (1966).Google Scholar
  122. 107.
    H. Falkenhagen, W. Ebeling, and H. G. Hertz, Theorie der Elektrolyte, Hirzel, Leipzig (1970).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Stuart I. Smedley
    • 1
  1. 1.Victoria University of WellingtonWellingtonNew Zealand

Personalised recommendations