Advertisement

Enzyme Histochemistry

  • E. Marani

Abstract

In the following pages, various important aspects of enzyme histochemistry will be discussed. Enzymes are proteins, and a basic understanding of enzyme histochemistry will require first a brief review of proteins including their biochemical characteristics. Special attention will be directed toward the biochemistry of enzymatic catalysis. After this introductory material, some aspects of enzyme histochemistry will be more specifically reviewed in the context of the introductory presentation of enzyme biochemistry. It should become clear that an accurate interpretation of histochemical results is possible only with the help of detailed knowledge of the biochemical properties of enzymes.

Keywords

Purkinje Cell Molecular Layer AChE Activity Snake Venom Anterior Lobe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E., and Norton, I.L., 1964, Purification and properties of inducible hydroxyproline-2-epimirase from Pseudomonas, J. Biol. Chem. 239: 1525.PubMedGoogle Scholar
  2. Ahmed, Z., and Reis, J.L., 1958, The activation and inhibition of 5′-nucleotidase, Biochem. J. 69: 386.PubMedGoogle Scholar
  3. Albers, R.W., Siegel, G.W., Katzman, R., and Agranoff, B.W., 1972, Basic Neurochemistry, Little, Brown, Boston.Google Scholar
  4. Aldridge, W.N., 1953, The differentiation of true and pseudo-cholinesterase by organophosphorus compounds, Biochem. J. 53: 62.PubMedGoogle Scholar
  5. Alksne, J.F., Blackstad, T.W., Walberg, F., and White, L.E., Jr., 1966, Electron microscopy of axon degeneration: A valuable tool in experimental neuroanatomy, Ergeb. Anat. Entwicklungsgesch. 39 (1): 1.Google Scholar
  6. Andersch, M., and Szcypinski, A.J., 1947, Use of p-nitrophenyl-phosphate as the substrate in determination of serum acid phosphatase, Am. J. Clin. Pathol. 17: 571.PubMedGoogle Scholar
  7. Aprison, M.H., 1975, Comments on potential new transmitter candidates, p. 9, ISN Barcelona Meeting.Google Scholar
  8. Arvy, L., 1966, Cerebellar enzymology, Int. Rev. Cytol. 20: 277.PubMedCrossRefGoogle Scholar
  9. Armstrong, D.M., Harvey, R.J., and Schild, R.F., 1974, Topographical localization in the olivocerebellar projection: An electrophysiological study in the cat, J. Comp. Neurol. 154: 287.PubMedCrossRefGoogle Scholar
  10. Austin, L., and Phillis, J.W., 1965, The distribution of cerebellar cholinesterases in several species, J. Neurochem. 12: 709.PubMedCrossRefGoogle Scholar
  11. Baker, J.R., 1944, The structure and chemical composition of the Golgi Element, Q. J. Microsc. Sci. 85: 72.Google Scholar
  12. Barka, T., and Anderson, P.J., 1962, Histochemical methods for acid phosphatase using hexazonium pararosanilin as coupler, J. Histochem. Cytochem. 10: 741.CrossRefGoogle Scholar
  13. Becker, N.H., 1961, The cytochemistry of anoseic and anoseic—ischemic encephalopathy in rats. II. Alterations in neuronal mitochondria identified by diphosphopyridine and triphosphopyridine nucleotide diaphorase, Am. J. Pathol. 38: 587.PubMedGoogle Scholar
  14. Becker, N.H., 1962, The cytochemistry of anoseic and anoseic—ischemic encephalopathy in rats. III. Alterations in the neuronal Golgi apparatus identified by nucleoside diphosphatase activity, Am. J. Pathol. 40: 243.PubMedGoogle Scholar
  15. Becker, N.H., and Barron, R.D., 1961, The cytochemistry of anoseic and anoseic—ischemic encephalopathy in rats. I. Alterations in neuronal lysosomes identified by acid phosphatase activity, Am. J. Pathol 38: 161.Google Scholar
  16. Belfield, A., and Goldberg, D.M., 1976, Comparison of sodium beta-glycerophosphate and disodium phenylphosphate as inhibitors of alkaline phosphatase in determination of 5′-nucleotidase activity of human serum, Clin. Biochem. 3: 105.Google Scholar
  17. Bloom, F.E., Hoffer, B.J., and Siggins, G.R., 1971, Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. I. Localization of the fibers and their synapses, Brain Res. 25: 501.PubMedCrossRefGoogle Scholar
  18. Bobillier, P., and Mouret, J.R., 1971, The alterations of the diurnal variations of brain tryptophan, biogenic amines and 5-hydroxyindole actic acid in the rat under limited feeding, Int. J. Neurosci. 2: 271.PubMedCrossRefGoogle Scholar
  19. Boesten, A.J.P., and Voogd, J., 1975, Projections of the dorsal column nuclei and the spinal cord on the inferior olive in the cat, J. Comp. Neurol. 161: 215.PubMedCrossRefGoogle Scholar
  20. Borgers, M., 1973, The cytochemical application of new potent inhibitors of alkaline phosphatases, J. Histochem. Cytochem. 21: 812.PubMedCrossRefGoogle Scholar
  21. Bosmann, H.B., and Pike, G.Z., 1970, Membrane marker enzymes: Isolation, purification and properties of 5′-nucleotidase from rat cerebellum, Biochem. Biophys. Acta 227: 402.Google Scholar
  22. Breckenridge, B.McL., and Johnston, R.E., 1969, Cyclic 3′,5′-nucleotide phosphodiesterase in brain, J. Histochem. Cytochem. 17: 505.PubMedCrossRefGoogle Scholar
  23. Brewer, G.J., 1970, An Introduction to Isoenzyme Techniques, Academic Press, New York.Google Scholar
  24. Brodal, A., 1940, Experimentelle Untersuchungen über olivo-cerebellare Lokalisation, Z. Gesamte Neurol. Psychiatr. 169: 1.Google Scholar
  25. Brodal, A., Walberg, F., and Blackstad, T., 1950, Termination of spinal afferents to the inferior olive in cat, J. Neurophysiol. 13: 431.PubMedGoogle Scholar
  26. Burstone, M.S., 1958, The relationship between fixation and techniques for the histochemical localization of hydrolytic enzymes, J. Histochem. Cytochem. 6: 322.PubMedCrossRefGoogle Scholar
  27. Burstone, M.S., 1962, Enzymehistochemistry and Its Application on the Study of Neoplasms, Academic Press, New York.Google Scholar
  28. Busch, H.F.M., 1961, An Anatomical Analysis of the White Matter in the Brain Stem of the Cat, Van Gorcum, Assen, Holland.Google Scholar
  29. Cammermeyer, J., 1962, An evaluation of the significance of the “dark” neuron, Ergeh. Anat. Entwicklungsgesch. 36: 1.Google Scholar
  30. Campbell, D.M., 1962, Determination of 5′-nucleotidase in blood serum, Biochem. J. 82: 43.Google Scholar
  31. Carlstedt, T., 1977, I. A preparative procedure useful for electron microscopy of the lumbosacral dorsal rootlets, in: Observations on the Morphology at the Transition between the Peripheral and the Central Nervous System in the Cat, Acta Physiol. Scand., Suppl. 466.Google Scholar
  32. Chance, B., 1952, The kinetics and stoichiometry of the transition from the primary to the secondary peroxidase peroxide, Arch. Biochem. Biophys. 41: 416.CrossRefGoogle Scholar
  33. Chujo, T., Yamada, Y., and Yamamoto, C., 1975, Sensitivity of Purkinje cell dendrites to glutamic acid, Exp. Brain Res. 23: 293.Google Scholar
  34. Coimbra, A., Sodre-Borges, B.P., and Magalhoes, M.M., 1974, The substantia gelatinosa Rolandi of the rat: Fine structure, cytochemistry (acid phosphatase) and changes after dorsal root section, J. Neurocytol. 3: 199.PubMedCrossRefGoogle Scholar
  35. Collu, R., Jequier, J.C., Letarte, J., Leboeuf, G., and Ducharme, J.R., 1973, Diurnal variations of plasma growth hormone and brain monoamines in adult male rats, Can. J. Physiol. Pharmacol. 51: 890.PubMedCrossRefGoogle Scholar
  36. Crawford, J.M., Curtis, D.R., Voorhoeve, P.E., and Wilson, V.J., 1966, Acetylcholine sensitivity of cerebellar neurones in the cat., J. Physiol. 186: 139.PubMedGoogle Scholar
  37. Csillik, B., and Knyihar, E., 1975, Degenerative atrophy and regenerative proliferation in rat spinal cord, Z. Mikrosk. Anat. Forsch. 89 (6): 1099.Google Scholar
  38. Davidoff, M., 1973, Uber die Glia im Hypoglossuskern der Ratte nach Axotomie, Z. Zellforsch. Mikrosk. Anat. 141: 427.CrossRefGoogle Scholar
  39. De Duve, C., and Baudhuin, P., 1966, Peroxisomes (microbodies and related particles), Physiol. Rev. 46: 323.Google Scholar
  40. Deierkauf, F.A., and Heslinga, F.J.M., 1962, The action of formaldehyde on rat brain lipids, J. Histochem. Cytochem. 10: 79.CrossRefGoogle Scholar
  41. Deisseroth, A., and Dounce, A.L., 1970, Catalase: Physical and chemical properties, mechanism of catalysis and physiological role, Physiol. Rev. 50 (3): 319.Google Scholar
  42. Desclin, J.C., 1974, Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibres in the rat, Brain Res. 77: 365.PubMedCrossRefGoogle Scholar
  43. Desclin, J.C., 1976, Early terminal degeneration of cerebellar climbing fibres after destruction of the inferior olive in the rat: Synaptic relations in the molecular layer, Anat. Embryol. 149: 112.CrossRefGoogle Scholar
  44. Desclin, J.C., and Escubi, J., 1974, Effects of 3-acetylpyridine on the central nervous system of the rat, as demonstrated by silver methods, Brain Res. 77: 349.PubMedCrossRefGoogle Scholar
  45. Desmedt, J.E., and La Grutta, G., 1957, The effect of selective inhibition of pseudo cholinesterase on the spontaneous and evoked activity of the cat’s cerebral cortex, J. Physiol. 136: 20.PubMedGoogle Scholar
  46. Di Raddo, J., and Kellogg, C., 1975, In vivo rates of tyrosine and tryptophan hydroxylation on regions of rat brains at four times during light—dark cycle, Nannyn-Schmiedeberg’s Arch. Pharmacol. 286: 389.Google Scholar
  47. Dixon, K.C., 1965, Ischaemia and the neurons, in Neurohistochemistry ( C.W.M. Adams, ed.), pp. 558–598, Elsevier, Amsterdam, London.Google Scholar
  48. Dixon, M., and Webb, E.C., 1958, Enzymes, Longmans, Green, London.Google Scholar
  49. Drummond, G.J., and Yamamoto, M., 1971, Nucleotide phosphomonoesterases, in: The Enzymes, Vol. IV ( D. Boyer, ed.), pp. 337–352, Academic Press, New York.Google Scholar
  50. Edwards, S.B., 1972, The ascending and descending projection of the red nucleus in the cat: An experimental study using an autoradiographic tracing method, Brain Res. 48:45. El-Aaser, A.A., and Reid, E., 1969, Rat liver 5′-nucleotidase, Histochem. J. 1: 417.Google Scholar
  51. El-Badawi, A., and Schenk, E.A., 1966, Dual innervation of the mammalian urinary bladder: A histochemical study of the distribution of cholinergic and adrenergic nerves, Am. J. Anat. 119: 405.PubMedCrossRefGoogle Scholar
  52. El-Badawi, A., and Schenk, E.A., 1967, Histochemical methods for separate, consecutive and simultaneous demonstration of acetylcholinesterase and norepinephrine in cryostat sections, J. Histochem. Cytochem. 15: 580.PubMedCrossRefGoogle Scholar
  53. El-Badawi, A., and Schenk, E.A., 1968a, The peripheral adrenergic innervation apparatus. I. Intraganglionic and extraganglionic adrenergic ganglion cells, Z. Zellforsch. Mikrosk. Anat. 87: 218.CrossRefGoogle Scholar
  54. El-Badawi, A., and Schenk, E.A., 1968b, A new theory of the innervation of bladder musculature. Part I. Morphology of the intrinsic vesical innervation apparatus, J. Urol. 99: 585.PubMedGoogle Scholar
  55. El-Badawi, A., and Schenk, E.A., 1969, Innervation of the abdominopelvic ureter in the cat, Am. J. Anat. 126: 103.CrossRefGoogle Scholar
  56. El-Badawi, A., and Schenk, E.A., 1970, Intra- and extraganglionic peripheral cholinergic neurons in the urogenital organs of the cat, Z. Zellforsch. Mikrosk. Anat. 103: 26.CrossRefGoogle Scholar
  57. El-Badawi, A., and Schenk, E.A., 1971a, A new theory of the innervation of bladder musculature. Part II. The innervation apparatus of the ureterovesical function, J. Urol. 105: 368.Google Scholar
  58. El-Badawi, A., and Schenk, E.A., 1971b, A new theory of the innervation of bladder musculature. Part III. Postganglionic synapses in ureterovesicourethral autonomic pathways, J. Urol. 105: 372.Google Scholar
  59. El-Badawi, A., and Schenk, E.A., 1974, A new theory of the innervation of bladder musculature. Part IV. Innervation of the vesico-urethral function and external urethral sphincter, J. Urol. 111: 613.Google Scholar
  60. Fahimi, H.D., 1975, Fine structural cytochemical localization of perqxidatic activity of catalase, in: Techniques of Biochemical and Biophysical Morphology ( D. Glick and H. Rosenbaum, eds.), Vol. 2, pp. 197–245, John Wiley, New York.Google Scholar
  61. Feirabend, H.K.P., and Voogd, J., 1975, The efferent projection of the cerebellar cortex in the white Leghorn (Callus domesticus) and its relation to the longitudinal organization of the cerebellar white matter, Exp. Brain Res. 23 (Suppl.): 70.Google Scholar
  62. Feirabend, H.K.P., Vielvoye, G.J., Freedman, S.L., and Voogd, J., 1977, Longitudinal organization of afferent and efferent connections of the cerebellar cortex of the white Leghorn (Gallus domesticus), Exp. Brain Res., Suppl. I, p. 72.Google Scholar
  63. Felicetti, D., and Rath, F.W., 1975, Zum Vorkommen und zur Isolierung einer durch Zink stark aktivierbaren sauren Phosphatase im Grosshirn der Ratte, Acta Histochem. 53 (2): 281.PubMedGoogle Scholar
  64. Filogamo, G., and Candiollo, L., 1962, Observations on the behaviour of acetyl Cholinesterase (AChE) in the new cells of the spinal reflex arc, after section of the peripheral nerves (experimental investigations in Lepus Cuniculus L.), Acta Anat. 51: 273.CrossRefGoogle Scholar
  65. Fiske, C.H., and Subbarow, Y., 1925, The colorimetric determination of phosphorus, J. Biol. Chem. 66 (2): 375.Google Scholar
  66. Flumerfelt, B.A., and Lewis, P.R., 1975, Cholinesterase activity in the hypoglossal nucleus of the rat and the changes produced by axotomy: A light and electron microscopic study, J. Anat. 119 (2): 309.PubMedGoogle Scholar
  67. Friede, R.L., 1959, Histochemical demonstration of phosphorylase in brain tissue: Association of postmortal neuron changes with phosphorylase activity, J. Histochem. Cytochem. 7: 34.PubMedCrossRefGoogle Scholar
  68. Friede, R.L., 1963, Interpretation of hyperchronic nerve cells: Relative significance of the type of fixative used, of the osmolarity of the cytoplasm and the surrounding fluid in the production of cell shrinkage, J. Comp. Neurol. 121: 137.PubMedCrossRefGoogle Scholar
  69. Friede, R.L., 1964, Axon swellings produced in vivo in isolated segments of nerves, Acta Neuropathol. 3: 229.PubMedCrossRefGoogle Scholar
  70. Friede, R.L., 1966, Topographic Brain Chemistry, Academic Press, New York.Google Scholar
  71. Friedenwald, J.S., and Becker, B., 1948, Histochemical localization of glucuronidase, J. Cell. Comp. Physiol. 31: 303.CrossRefGoogle Scholar
  72. Gerebtzoff, M.A., and Ziegels, J., 1974, An attempt to localize cyclic phosphodiesterase at adrenergic nerve endings, J. Neural Transm., Suppl. XI, p. 181.Google Scholar
  73. Gezelius, K., and Wright, B.E., 1965, Alkaline phosphatase in Dictyostelium discoideum, J. Gen. Microbiol. 38: 309.PubMedCrossRefGoogle Scholar
  74. Gibson, W.B., and Drummond, G.I., 1972, Properties of 5′-nucleotidase from avian heart, Biochemistry 11 (2): 223.PubMedCrossRefGoogle Scholar
  75. Glenner, G.G., 1965, Enzyme histochemistry, in: Neurohistochemistry ( C.W.M. Adams, ed.), pp. 109–160, Elsevier, Amsterdam.Google Scholar
  76. Glenner, G.G., Weissbach, H., and Redfield, B.G., 1960, The histochemical demonstration of enzymatic activity by a non-enzymatic redox reaction: Reduction of tetrazolium salts by indo-3-acetaldehyde, J. Histochem. Cytochem. 8: 258.PubMedCrossRefGoogle Scholar
  77. Gollnick, P.D., and Armstrong, R.B., 1976, Histochemical localization of lactate dehydrogenase isozymes in human skeletal muscle fibers, Life Sci. 18: 27.PubMedCrossRefGoogle Scholar
  78. Gomori, G., 1941, The distribution of phosphatases in normal organs and tissues, J. Cell. Comp. Physiol. 17: 71.CrossRefGoogle Scholar
  79. Gomori, G., 1952, Microscopic Histochemistry: Principles and Practics, Chicago University Press.Google Scholar
  80. Gomori, G., and Chessick, B.O., 1953, Esterases and phosphatases of the brain: A histochemical study, J. Neuropathol. Exp. Pathol. 12: 387.CrossRefGoogle Scholar
  81. Graham, R.C., and Karnovsky, M.J., 1965a, The histochemical demonstration of uricase activity, J. Histochem. Cytochem. 13: 448.PubMedCrossRefGoogle Scholar
  82. Graham, R.C., and Karnovsky, M.J., 1965b, The histochemical demonstration of monoamine oxidase activity by coupled peroxidatic oxidation, J. Histochem. Cytochem. 13: 604.PubMedCrossRefGoogle Scholar
  83. Graham, R.C., and Karnovsky, M.J., 1966, The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidneys: Ultrastructural cytochemistry by a new technique, J. Histochem. Cytochem. 14: 291.PubMedCrossRefGoogle Scholar
  84. Gray, E.G., 1959, Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study, J. Anat. 93: 420.PubMedGoogle Scholar
  85. Gray, E.G., and Whittaker, V.P., 1962, The isolation of nerve endings from brain: An electron-microscopic study of cell fragments derived by homogenization and centrifugation, J. Anat. 96: 79.PubMedGoogle Scholar
  86. Groenewegen, H.J., and Voogd, J., 1977, The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum, J. Comp. Neurol. 174: 417.Google Scholar
  87. Groenewegen, H.J., Boesten, A.J.P., and Voogd, J., 1975, The dorsal column nuclear projections to the nucleus ventralis posterior lateralis thalami and the inferior olive in the cat: An autoradiographic study, J. Comp. Neurol. 162: 505.PubMedCrossRefGoogle Scholar
  88. Guidotti, A., Biggio, G., and Costa E., 1975, 3-Acetylpyridine: A tool to inhibit the tremor and the increase of c-GMP content in cerebellar cortex elicited by harmaline, Brain Res. 96: 201.Google Scholar
  89. Hanker, J.S., Thornburg, L.P., Yates, P.E., and Moore, H.G., 1973, III: The demonstration of cholinesterases by the formation of osmium blacks at the sites of Hatchett’s brown, Histochemie 37: 223.PubMedCrossRefGoogle Scholar
  90. Hanker, J.S., Thornburg, L.P., Yates, P.E., and Romanovicz, D.K., 1974, The demonstration of arylsulfatases with 4-nitro-1,2-benzenediol mono (hydrogen sulfate) by the formation of osmium blacks at the sites of copper capture, Histochemistry 41: 207.CrossRefGoogle Scholar
  91. Hardonk, M.J., and De Boer, H.G.A., 1968, 5′-Nucleotidase. III. Determinations of 5′-nucleotidase isoenzymes in tissue of rat and mouse, Histochemie 12: 29.Google Scholar
  92. Hardonk, M.J., and Koudstaal, J., 1968, 5′-Nucleotidase. II. The significance of 5′-nucleotidase in the metabolism of nucleotides studied by histochemical and biochemical methods, Histochemie 12: 18.Google Scholar
  93. Hardonk, M.J., Bouma, J.M.W., Mulder, G.J., and Konings, 1975, Enzyme histochemical evaluation of centrifugation procedures, Acta Histochem., Suppl. XIV, p. 91.Google Scholar
  94. Hyat, M.A., 1970, Principles and Techniques of Electron Microscopy: Biological Applications, Vol. I, Van Nostrand Reinhold, New York.Google Scholar
  95. Heald, P.J., 1960, Phosphorus Metabolism of Brain, Pergamon Press, Oxford.Google Scholar
  96. Heim, W.G., Appleman, D., and Pyform, H.T., 1955, Production of catalase changes in animals with 3-amino-l,2,4 triazole, Science 122: 693.PubMedCrossRefGoogle Scholar
  97. Henkel, C.K., Linauts, M. and Martin, G.F., 1975, The origin of annulo olivary tract with notes on other mesencephalo-olivary pathways: A study by the HRP method, Brain Res. 100: 145.PubMedCrossRefGoogle Scholar
  98. Herzog, V., and Fahimi, H.D., 1976, Intracellular distinction between peroxidase and catalase in excocrine cells of rat lacrimal gland: A biochemical and cytochemical study, Histochemistry 46: 273.PubMedCrossRefGoogle Scholar
  99. Herzog, V., and Miller, F., 1972, Endogeneous peroxidase in the lacrimal gland of the rat and its differentiation against injected catalase and horseradish-peroxidase, Histochemie 30: 235.PubMedGoogle Scholar
  100. Higashi, H., Okawa, K., and Takamatsu, H., 1960, Proc. Jpn. Histochem. Soc., p. 80; cited in Pearse (1972).Google Scholar
  101. Hills, C.P., 1964a, Ultrastructural changes in the capillary bed of the rat cerebral cortex in anoseic—ischemic brain lesions, Am. J. Pathol. 44: 531.PubMedGoogle Scholar
  102. Hills, C.P., 19646, The ultrastructure of anoseic—ischemic lesions in the cerebral cortex of the adult rat brain, Guy’s Hosp. Rep. 113: 333 - 348.Google Scholar
  103. Hoffer, B.J., Siggins, G.R., and Bloom, F.E., 1971, Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis, Brain Res. 25: 523.PubMedCrossRefGoogle Scholar
  104. Holt, S.J., and O’Sullivan, D.G., 1958, The studies in enzyme cytochemistry. Part I. Principles of cytochemical staining methods, Proc. R. Soc. London Ser. B 148: 465–480.CrossRefGoogle Scholar
  105. Holzman, E., Teichberg, S., Abrahams, S.J., Citkowitz, E., Crain, S.M., Kawai, H., and Peterson, E.R., 1973, Notes on synaptic vesicles and related structures, endoplasmic reticulum, lysosomes and peroxisomes in nervous tissue and the adrenal medulla, J. Histochem. Cytochem. 21: 349.CrossRefGoogle Scholar
  106. Hopwood, D., 1972, Theoretical and practical aspects of glutaraldehyde fixation, Histochem. J. 4: 267.PubMedCrossRefGoogle Scholar
  107. Hughes, A.F.W., and Lewis, P.R., 1961, Effect of limb ablation on neurones in Xenopus larvae, Nature (London) 189: 333.CrossRefGoogle Scholar
  108. Humason, G.L., 1972, Animal tissue techniques, in: A Series of Books in Biology ( D. Kennedy and R.B. Park, eds.), pp. 415–483, W.H. Freeman, San Francisco.Google Scholar
  109. Hyde, J.C., and Robinson, N., 1976, Improved histological localization of GABA-transaminase activity in rat cerebellar cortex after aldehyde fixation, Histochemistry 46: 261.PubMedCrossRefGoogle Scholar
  110. Ipata, P.L., 1966, Resolution of 5′-nucleotidase from non-specific phosphatase from sheep brain and its inhibition by nucleosidetriphosphates, Nature (London) 214: 618.CrossRefGoogle Scholar
  111. Ipata, P.L., 1967, Studies on the inhibition by nucleosidetriphosphates of sheep brain 5′-nucleotidase, Biochem. Biophys. Res. Commun. 27: 337.CrossRefGoogle Scholar
  112. Ipata, P.L., 1968, Sheep brain 5′-nucleotidase: Some enzymic properties and allosteric inhibition by nucleoside-triphosphates, Biochemistry 7: 507.PubMedCrossRefGoogle Scholar
  113. Israël, M., and Frachon-Mastour, P., 1970, Fractionnement du cortex cérébral du rat, distribution subcellulaire de la 5′-nucleotidase et des cholinestérases, Arch. Anal. Microsc. 59 (4): 383.Google Scholar
  114. Johnston, G.A.R., 1975, Proline, an inhibitory transmitter?, ISN Barcelona Meeting (1975), p. 11.Google Scholar
  115. Joo, F., Savay, G., and Csillik, B., 1965, A new modification of the Koelle—Friedenwald method for the histochemical demonstration of cholinesterase activity, Acta Histochem. 22: 40.PubMedGoogle Scholar
  116. Kabara, J.J., and Konvich, D., 1972, The extraction of brain isoenzymes with solvents of varying polarity, Proc. Soc. Exp. Biol Med. 139: 1326.PubMedGoogle Scholar
  117. Karlson, P., 1972, Biochemie fur Mediziner und Naturwissenschaftler, 8th ed., George Thieme, Stuttgart.Google Scholar
  118. Karnovsky, M.J., and Roots, L., 1964, A “direct-coloring” thiocholine method for cholinesterases, J. Histochem. Cytochem. 12: 219.PubMedCrossRefGoogle Scholar
  119. Kasa, P., and Csillik, B., 1965, Cholinergic excitation and inhibition in the cerebellar cortex, Nature ÇLondon) 208: 695.CrossRefGoogle Scholar
  120. Kasa, P., Joo, F., and Dsillik, B., 1965, Histochemical localization of acetylcholinesterase in the cat cerebellar cortex, J. Neurochem. 12: 31.PubMedCrossRefGoogle Scholar
  121. Kievit, J., and Kuypers, H.G.J.M., 1975, Subcortical afferents to the frontal lobe in the rhesus monkey studied by means of retrograde horseradish peroxidase transport, Brain Res. 85: 261.PubMedCrossRefGoogle Scholar
  122. Klaushoffer, R., and Pavelka, M., 1975, Studies on 5′-nucleotidase histochemistry. III. 5′-Nucleotidase activity in smooth muscle cells of the rat’s gastrointestinal tube, Histochemistry 43: 373.CrossRefGoogle Scholar
  123. Kluck, P., 1980, The autonomic innervation of the human urinary bladder, bladder neck and urethra: A histochemical study, Anat. Rec. 198: 3.Google Scholar
  124. Knyihar, E., and Csillik, B., 1976, Effects of peripheral axotomy on the fine structure and histochemistry of the Rolando substance: Degenerative atrophy of central processes of pseudounipolar cells, Exp. Brain Res. 26: 73.Google Scholar
  125. Koelle, G.B., and Friedenwald, J.S., 1949, A histochemical method for localizing cholinesterase activity, Proc. Soc. Exp. Biol. Med. 70: 617.PubMedGoogle Scholar
  126. Koelle, G.B., Davis, R., Smyrl, E.G., and Fine, A.V., 1974, Refinement of the bis-(thioacetoxy)aurate I method for the electron microscopic localization of acetylcholinesterase and non-specific cholinesterase, J. Histochem. Cytochem. 22: 252.PubMedCrossRefGoogle Scholar
  127. Kooy, F.H., 1916, The Inferior Olive in Vertebrates, De Erven Bohn, Haarlem, The Netherlands.Google Scholar
  128. Kostopoulos, G.K., Limacher, J.J., and Phillis, J.W., 1975, Action of various adenine derivates on cerebellar Purkinje cells, Brain Res. 88: 162.PubMedCrossRefGoogle Scholar
  129. Kristensson, K., and Olsson, Y., 1971, Retrograde axonal transport of protein, Brain. Res. 29: 363.Google Scholar
  130. Kristensson, K., Olsson, Y., and Sjostrand, J., 1971, Axonal uptake and retrograde transport of exogenous proteins in the hypoglossal nerve, Brain Res. 32: 399.PubMedCrossRefGoogle Scholar
  131. Kuypers, H.G.J.M., Kievit, J., and Groen-Klevent, A.C., 1974, Retrograde axonal transport of horseradish peroxidase in rat forebrain, Brain Res. 67: 210.CrossRefGoogle Scholar
  132. La Vail, J.H., and La Vail, M.M., 1972, Retrograde axonal transport in the central nervous system, Science 176: 1416.CrossRefGoogle Scholar
  133. La Vail, J.H., Winston, K.R., and Tish, A., 1973, A method based on retrograde intraaxonal transport of protein for identification of cell bodies of origin of axons terminating within the C.N.S., Brain Res. 58: 470.CrossRefGoogle Scholar
  134. Lee, S.H., and Torack, R.M., 1968, Electron microscope studies of glutamic oxalacetic transaminase in rat liver cells, J. Cell Biol. 39: 716.PubMedCrossRefGoogle Scholar
  135. Levitt, M., Spector, S., Sjoerdsma, A., and Udenfriend, S., 1965, Elucidation of the rat limiting step in norepinephrine biosynthesis in the perfused guinea pig heart, J. Pharmacol. Exp. Ther. 148: 1.PubMedGoogle Scholar
  136. Lewis, P.R., and Knight, D.P., 1977, Staining methods for sectioned material, in: Practical Methods in Electron Microscopy ( A.M. Glanert, ed.), pp. 137–223, North-Holland, Amsterdam.Google Scholar
  137. Lewis, P.R., and Schon, F.E.G., 1975, The localization of acetylcholinesterase in the locus coeruleus of the normal rat and after 6-hydroxydopamine treatment, J. Anat. 120 (2): 373.PubMedGoogle Scholar
  138. Lewis, P.R., and Shute, C.C.D., 1963, Alginate gel; An embedding medium for facilitating the cutting and handling of frozen sections, Stain Technol 38: 307.PubMedGoogle Scholar
  139. Lewis, P.R., and Shute, C.C.D., 1964, Demonstration of Cholinesterase activity with the electron microscope, J. Physiol. 175: 5.Google Scholar
  140. Lewis, P.R., and Shute, C.C.D., 1966, The distribution of Cholinesterase in cholinergic neurons, demonstrated with the electron microscope, J. Cell. Sci. 1: 381.PubMedGoogle Scholar
  141. Lewis, P.R., Scott, J.A., and Navaratnam, V., 1970, Localization in the dorsal motor nucleus of the vagus in the rat, J. Anat. 107: 197.PubMedGoogle Scholar
  142. Lison, L., 1936, Histochemie Animale, Paris.Google Scholar
  143. Long, J.P., 1963, Structure activity relationships of the reversible anticholinesterase agents, in: Handbuch der experimentellen Pharmakologie, Vol. 15 ( G.B. Koelle, ed.), p. 374, Springer-Verlag, Berlin.Google Scholar
  144. Lovenberg, W., and Victor, S.J., 1974, Regulation of tryptophan and tyrosine hydroxylase, Life Sci. 14: 2337.PubMedCrossRefGoogle Scholar
  145. Lowry, B.H., Rosebrough, N.J., Farr, H., and Randall, R.J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193: 265.PubMedGoogle Scholar
  146. MacDonald, M., and Spector, R.G., 1963, The influence of anoseia on respiratory enzymes in rat brain, Br. J. Exp. Pathol 44: 11.Google Scholar
  147. Majoor, G.D., 1973, AMPase activity in the wing disk and mesothoracic leg disk of some dipteran larvae, Neiherl. J. Zool. 23: 111.CrossRefGoogle Scholar
  148. Malmfors, T., and Thoenen, H., 1971, 6-Hydroxydopamine and Catacholamine Neurons, North-Holland, Amsterdam.Google Scholar
  149. Malmgren, H., and Sylven, B., 1955, On the chemistry of the thiocholine method of Koelle, J. Histoehem. Cytochem. 3: 441.CrossRefGoogle Scholar
  150. Manocha, S.L., and Shanta, T.R., 1970, Macaca mulatta: Enzyme Histochemistry of the Nervous System, Chapter X, Cerebellum, Academic Press, New York.Google Scholar
  151. Marani, E., 1977, The subcellular distribution of 5′-nucleotidase activity in the mouse cerebellum, J. Exp. Neurol. 57: 1042–1048.CrossRefGoogle Scholar
  152. Marani, E., 1978, A method for orienting cryostat sections for three-dimensional reconstructions, Stain Technol. 53: 265–268.PubMedGoogle Scholar
  153. Marani, E., 1979, The morphology of the mouse cerebellum, Acta. Morphol. Neerl. Scand. 17: 33–52.Google Scholar
  154. Marani, E., 1980a, K+ and Na+ activation of cerebellar 5′-nucleotidase, J. Exp. Neurol. 67: 412–422.CrossRefGoogle Scholar
  155. Marani, E., 1980b, 5′-Nucleotidase in der Molekularschicht des Rattenkleinhirns, Acta Histoehem. Suppl. XXI, pp. 237–242.Google Scholar
  156. Marani, E., The 5′-nucleotidase isoenzyme in the mouse cerebellum (in prep.).Google Scholar
  157. Marani, E., and Boekee, A., 1973, Aspects histoenzymologiques de la localisation de l’adenylcyclase, de la C.3′,5′-nucleotide phosphodiesterase, de la 5′-nucleotidase et de l’alpha-glucanphos- phorylase dans le cervelet de la souris, Bull. Assoc. Anat. (Nancy) 57 (158): 555.Google Scholar
  158. Marani, E., and Voogd, J., 1973, Some aspects of the localization of the enzyme 5′-nucleotidase in the molecular layer of the cerebellum of the mouse, Acta Morphol. Neerl.-Scand. 11 (4): 365.Google Scholar
  159. Marani, E., and Voogd, J., 1977, An acetylcholinesterase band pattern in the molecular layer of the cat cerebellum, J. Anat. 124 (2): 335–345.PubMedGoogle Scholar
  160. Marani, E., Voogd, J., and Boekee, A., 1977, Acetyl Cholinesterase staining in subdivisions of the cat’s inferior olive, J. Comp. Neurol. 174: 209–226.PubMedCrossRefGoogle Scholar
  161. Marani, E., Rietveld, W.J., and Osselton, J. C., 1979, Ultrastructural localization of the endogenous peroxidase activity in the ventromedial arcuate nucleus, I.R.C.S. Med. Sci. 7: 501–502.Google Scholar
  162. Maréschal, P., 1934, Uolive Bulbaire: Anatomie, Ontogenese, Phylogenese, Physiologie et Physiopathologie, Doin, Paris.Google Scholar
  163. Martines-Rodriguez, R., Garcia-Legura, L.M., Toledano, A., and Martines-Murille, R., 1976, Aspertate amino transferase activity and glutamic dehydrogenase in the cerebellar cortex in several species of animals: A histochemical study, J. Hirnforsch. 17: 387–398.Google Scholar
  164. Maruyama, S., and Agostino, A.N.D., 1967, Cell necrosis in the central nervous system of normal rat fetuses: An electron microscopic study, Neurology 17: 550.PubMedCrossRefGoogle Scholar
  165. Mayersbach, H. von, 1964, The Cellular Aspects of Biorhythms, Springer-Verlag, Heidelberg.Google Scholar
  166. McCance, J., and Phillis, J.W., 1964, The action of acetylcholine on cells in cat cerebellar cortex, Experientia 20: 217.PubMedCrossRefGoogle Scholar
  167. Meijer, A.E.F.H., 1972, Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. I. Acid phosphatase, Histochemie 30: 31.PubMedCrossRefGoogle Scholar
  168. Meijer, A.E.F.H., 1973, Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. III. Lactate dehydrogenase, Histochemie 35: 165.PubMedCrossRefGoogle Scholar
  169. Meijer, A.E.F.H., and de Vries, G.P., 1974, Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. IV. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase (decarboxylating), Histochemistry 40: 349.PubMedCrossRefGoogle Scholar
  170. Meijer, A.E.F.H., and Vloedman, A.H.T., 1973, Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. II. Non specific esterase and beta-glucuronidase, Histochemie 34: 127.PubMedCrossRefGoogle Scholar
  171. Milaire, J., 1969, Etude morphogénétique de la syndactylie postaseiale provoquée chez le rat par l’hadacidine. I, Arch. Biol (Liège) 80: 167.Google Scholar
  172. Miller, R.A., 1949, A morphological and experimental study of chromophilic neurons in the cerebral cortex, Am. J. Anat. 84: 201.PubMedCrossRefGoogle Scholar
  173. Nachlas, M.M., Crawford, D.T., Goldstein, T.P., and Seligman, A.M., 1958, The histochemical demonstration of cytochrome oxidase with a new reagent for the Nadi reaction, J. Histochem. Cytochem. 6: 445.PubMedCrossRefGoogle Scholar
  174. Naidoo, D., and Pratt, O.E., 1954, The development of adenosine 5′-phosphatase activity with the maturation of the rat cerebral cortex, Enzymologia 5: 298.Google Scholar
  175. Navaratnam, V., and Lewis, P.R., 1975, Effects of vagotomy on the distribution of cholinesterases in the cat medulla oblongata, Brain Res. 100: 599.PubMedCrossRefGoogle Scholar
  176. Neu, H.C., 1967a, The 5′-nucleotidase of Escherichia coli. I. Purification and properties, J. Biol. Chem. 242 (17): 3905.Google Scholar
  177. Neu, H.C., 19676, The 5′-nucleotidase of Escherichia coli. II. Surface localization and purification of the Escherichia coli 5′-nucleotidase inhibitor, J. Biol. Chem. 242(17):3986.Google Scholar
  178. Novikoff, A.B., 1973, Studies on the structure and function of cell organelles: 3,3′-Diamino benzidine cytochemistry, in: Electron Microscopy and Cytochemistry ( E. Wisse, W.T. Daems, I. Molenaar, and P. Van Duyn, eds.), pp. 89–109, North-Holland, Amsterdam.Google Scholar
  179. Novikoff, A.B., Shin, W.Y., and Drucker, J., 1960, Cold acetone fixation for enzyme localization in frozen sections, J. Histochem. Cytochem. 8: 37.PubMedCrossRefGoogle Scholar
  180. Novikoff, A.B., Quintana, N., Villaverde, H., and Forschirm, R., 1966, Nucleoside phosphatase and cholinesterase activities in dorsal root ganglia and peripheral nerve, J. Cell. Biol. 29: 525.PubMedCrossRefGoogle Scholar
  181. Novikoff, P.M., and Novikoff, A.B., 1972, Peroxisomes in absorptive cells of mammalian intestine, J. Cell. Biol. 53: 532.PubMedCrossRefGoogle Scholar
  182. O’Connor, T.M., and Wyttenbach, C.R., 1974, Cell death in the embryonic chick spinal cord, J. Cell Biol. 60: 448.PubMedCrossRefGoogle Scholar
  183. Olney, J.W., 1969, Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate, Science 164: 719.PubMedCrossRefGoogle Scholar
  184. Olney, J.W., Rhee, V., and De Gubareff, T., 1977, Neurotoxic effects of glutamate on mouse area postrema, Brain Res. 120: 151.PubMedCrossRefGoogle Scholar
  185. Oscarsson, O., 1973, Functional organization of spino-cerebellar paths, in: Handbook of Sensory Physiology, Vol. II (A. Iggo, éd.), Chapt. II, p. 339, Springer-Verlag, Berlin.Google Scholar
  186. O’Sullivan, D.G., 1955, Diffusion and simultaneous chemical reactions. II. The equations of those systems in which transport occurs from one region to an adjoining region, Bull. Math. Biophys. 17: 243.CrossRefGoogle Scholar
  187. Ozeki, M., and Sato, M., 1970, Potentiation of excitatory junctional potentials and glutamate- induced responses in crayfish muscle by 5′-ribonucleotides, Comp. Biochem. Physiol. 32: 203.Google Scholar
  188. Palay, S.L., and Chan-Palay, V., 1974, Cerebellar Cortex: Cytology and Organization, Springer-Verlag, Berlin.Google Scholar
  189. Palmer, A.C., and Elleker, A.R., 1961, Histochemical localization of cholinesterases in the brainstem of sheep. Q. J. Exp. Physiol. 46: 344.Google Scholar
  190. Pasquini, J.M., and Soto, E.F., 1972, Extraction of proteolipids from nervous tissue with n- butanol-water, Life Sci. 11 (Part II): 433.CrossRefGoogle Scholar
  191. Pearse, A.G.E., 1954, Intracellular localisation of dehydrogenase systems using monotetrazolium salts and metal chelation of their formazans, J. Histochem. Cytochem. 5: 515.CrossRefGoogle Scholar
  192. Pearse, A.G.E., 1968, Histochemistry Theoretical and Applied, Vol. I, Churchill Livingstone, Edinburgh.Google Scholar
  193. Pearse, A.G.E., 1972, Histochemistry Theoretical and Applied, Vol. II, Churchill Livingstone, Edinburgh.Google Scholar
  194. Persijn, J.P., and Van der Slik, W., 1970, A new method for the determination of serum 5′-nucleotidase, Z. Klin. Chem. Klin. Biochem. 8: 398.PubMedGoogle Scholar
  195. Persijn, J.P., Van der Slik, W., and Timmer, C.J., 1969, On the determination of serum 5′-nucleotidase activity in the presence of betaglycerophosphate, Clin. Biochem. 2: 335.Google Scholar
  196. Person, P., and Fine, A., 1961, Studies of indophenol blue synthesis. I. The role of free radical formation by heart muscle particulates during the “G” Nadi reaction, J. Histochem. Cytochem. 9: 190.Google Scholar
  197. Petresco, A., 1958, Les modifications de l’activité de la phosphatase alcaline dans le neurone cortical atrophié du lapin, Ann. Histochim. 3: 159.Google Scholar
  198. Phillis, J.W., 1965a, Cholinesterase in the cat cerebellar cortex deep nuclei and peduncles, Experientia 21: 266.PubMedCrossRefGoogle Scholar
  199. Phillis, J.W., 1965b, Cholinergic mechanisms in the cerebellum, Br. Med. Bull. 21: 26.PubMedGoogle Scholar
  200. Pilcher, C.W.T., and Jones, D.G., 1970, The distribution of 5′-nucleotidase in subcellular fractions of mouse cerebellum, Brain Res. 24: 143.PubMedCrossRefGoogle Scholar
  201. Poelmann, R.E., and Daems, W.T., 1973, Problems associated with the demonstration by lead methods of adenosine triphosphatase activity in resident peritoneal macrophages and exudate monocytes of the guinea pig, J. Histochem. Cytochem. 21: 488.PubMedCrossRefGoogle Scholar
  202. Ramon-Moliner, E., 1972, Acetylthiocholinesterase distribution in the brain stem of the cat, Ergebn. Anat. 46: 1.Google Scholar
  203. Rinvik, E., and Grevova, J., 1970, Observations on the fine structure of the substantia nigra in the cat, Exp. Brain Res. 11: 229.Google Scholar
  204. Robinson, P.M., 1971, The demonstration of acetylcholinesterase in autonomic axons with the electron microscope, in: Progress in Brain Research, Vol. 34, Histochemistry of Nervous Transmission ( O. Eränkö, ed.), pp. 357–370, Elsevier, Amsterdam.CrossRefGoogle Scholar
  205. Robinson, P.M., and Bell, C., 1967, The localization of acetylcholinesterase at the autonomic neuromuscular junction, J. Cell Biol. 33: 93.PubMedCrossRefGoogle Scholar
  206. Roels, F., Wisse, E., De Prest, B., and Van der Meulen, J., 1973, Cytochemical discrimination between peroxidases and catalases using diamino benzidine, in: Electron Microscopy and Cytochemistry ( E. Wisse, W.T. Daems, J. Molenaar, and P. van Duijn, eds.), pp. 115–118, North-Holland, Amsterdam.Google Scholar
  207. Ross, B.D., 1972, Perfusion Techniques in Biochemistry: A Laboratory Manual Clarendon Press, Oxford.Google Scholar
  208. Rustioni, A., Sanyal, A., and Kuypers, H.G.J.M., 1971, A histochemical study of the distribution of the trigeminal divisions in the substantia gelatinosa of the rat, Brain Res. 32: 45.PubMedCrossRefGoogle Scholar
  209. Rutenberg, A.M., and Seligman, A.M., 1955, The histochemical demonstration of acid phosphatase by a post-incubation coupling technique, J. Histochem. Cytochem. 3: 455.CrossRefGoogle Scholar
  210. Sabatini, D.P., Miller, F., and Barrnett, R.J., 1964, Aldehyde fixation for morphological and enzyme histochemical studies with the electron microscope, J. Histochem. Cytochem. 12: 57.PubMedCrossRefGoogle Scholar
  211. Sadler, P.J., 1976, Zinc in enzymes, Nature (London) 262 (5566): 258.Google Scholar
  212. Sakharova, A.V., 1966, Tsitologiya 8:54; cited in Silver (1967).Google Scholar
  213. Schevin, L.E., Harrison, W.H., Gordon, P., and Panly, J.E., 1968, Daily fluctuation (circadian and ultradian) in biogenic amines of the rat brain, Am. J. Physiol. 214: 166.Google Scholar
  214. Schevin, L.E., Halberg, F., and Pauly, J.E., 1974, Chronobiology, Georg Thieme, Stuttgart.Google Scholar
  215. Schlaeffer, W.W., La Valle, M.C., and Torack, R.M., 1969, Cytochemical demonstration of nucleoside phosphatase activity in myelinated nerve fibers of the rat, Histochemie 18: 281.CrossRefGoogle Scholar
  216. Schlüter, G., 1973, Ultrastructural observation on cell necrosis during formation of the neural tube in mouse embryos, Z. Anat. Entwicklungsgesch. 141: 251.CrossRefGoogle Scholar
  217. Schwartz, M.K., and Bodansky, O., 1964, Properties of activity of 5′-nucleotidase in human serum and application in diagnosis, Am. J. Clin. Pathol. 42: 572.PubMedGoogle Scholar
  218. Schwartz, M.K., and Bodansky, O., 1965, Serum 5′-nucleotidase in patients with cancer, Cancer 18: 886.PubMedCrossRefGoogle Scholar
  219. Scott, T.G., 1964, A unique pattern of localization within the cerebellum of the mouse, J. Comp. Neurol 122: 1.CrossRefGoogle Scholar
  220. Scott, T.G., 1965, The specificity of 5′-nucleotidase in the brain of the mouse, J. Histochem. Cytochem. 13: 657.PubMedCrossRefGoogle Scholar
  221. Scott, T.G., 1969, The quantitative assay of 5′-nucleotidase in brain by histophotometry, Histochem. J. 1: 215.PubMedCrossRefGoogle Scholar
  222. Seidler, E., and Kunde, D., 1969, Verbesserter histochemischer Dehydrogenasenachweis mit Monotetrazolium Salze, Acta Histochem. 32: 142.PubMedGoogle Scholar
  223. Seligman, A.M., Nachlas, M.M., Manheimer, L.H., Friedman, Q.M., and Wolf, G., 1949, Development of new methods for the histochemical demonstration of hydrolytic intracellular enzymes in a program of cancer research, Ann. Surg. 130: 333.CrossRefGoogle Scholar
  224. Seligman, A.M., Plapinger, R.E., Wasserkrug, H.L., Deb, C., and Hanker, J.S., 1967, Ultrastructural demonstration of cytochrome oxidase activity by the Nadi reaction with osmiophilic reagents, J. Cell. Biol. 34: 787.PubMedCrossRefGoogle Scholar
  225. Seligman, A.M., Karnovsky, M.J., Wasserkrug, H.L., and Hanker, J.S., 1968, Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diamino benzidine (DAB), J. Cell. Biol. 38: 1.PubMedCrossRefGoogle Scholar
  226. Seligman, A.M., Shannon, W., Hoshino, Y., and Plapinger, R., 1973, Some important principles in 3,3′-D.A.B. ultrastructural cytochemistry, J. Histochem. Cytochem. 21: 756.PubMedCrossRefGoogle Scholar
  227. Shantha, T.R., and Manocha, S.L., 1970, Macaca mulatta: Enzyme Histochemistry of the Nervous System, Chapter I X, The Cerebellum, Academic Press, New York.Google Scholar
  228. Shantha, T.R., Woods, W.D., Waitzman, M.B., and Bourne, G.H., 1966, Histochemical method for localization of cyclic 3′,5′-nucleotide phosphodiesterase, Histochemie 7: 177.CrossRefGoogle Scholar
  229. Shute, C.C.D., and Lewis, P.R. 1967, The ascending cholinergic reticular system: Neocortical, olfactory and subcortical projections, Brain 90: 497.PubMedCrossRefGoogle Scholar
  230. Sidman, R.L., Angevine, J.B., Jr., and Pierce, E.T., 1971, Atlas of the Mouse Brain and Spinal Cord, Harvard University Press, Cambridge.Google Scholar
  231. Siggins, G.R., Hoffer, B.J., and Bloom, F.E., 1971, Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. III. Evidence for mediation of norepinephrine effects by cyclic 3′,5′-adenosine monophosphate, Brain Res. 25: 535.PubMedCrossRefGoogle Scholar
  232. Silver, A., 1967, Cholinesterases of the central nervous system with special references to the cerebellum, Int. Rev. Neurobiol. 10: 57.PubMedCrossRefGoogle Scholar
  233. Silver, A., 1974, The biology of cholinesterases, in: North-Holland Research Monographs: Frontiers of Biology, Vol. 36 ( A. Neuberger and E.L. Tatum, eds.), pp. 1–596, North-Holland/American Elsevier, Amsterdam.Google Scholar
  234. Song, C.S., and Bodansky, O., 1967, Purification of 5′-nucleotidase from human liver, Biochem. J. 101: 5C.Google Scholar
  235. Sousa-Pinto, A., 1969, Experimental anatomical demonstration of a cortico-olivary projection from area 6 (suppl. motor area) in the cat, Brain Res. 16: 73.PubMedCrossRefGoogle Scholar
  236. Sousa-Pinto, A., and Brodal, A., 1969, Demonstration of a somato-topical pattern in the corticoolivary projection in the cat: An experimental anatomical study, Exp. Brain. Res. 8: 364.Google Scholar
  237. Spector, R.G., 1963, Cerebral succinic dehydrogenase, cytochrome oxidase and monoamine oxidase activity in experimental anoseic ischaemic brain damage, Br. J. Exp. Pathol. 44: 251.PubMedGoogle Scholar
  238. Sprey, T.E., 1970a, Morphological and histochemical changes during the development of some of the imaginal disks of Call, erythrocephala, Netherl. J. Zool. 20: 253.Google Scholar
  239. Sprey, T.E., 19706, Localization of 5′-nucleotidase and its possible significance in some of the imaginal disks of Call, erythrocephala, Netherl. J. Zool. 20: 419–432.Google Scholar
  240. Stensaas, S.S., Edwards, C.G., and Stensaas, L., 1972, An experimental study of hyperchronic nerve cells in the cerebellar cortex, Exp. Neurol. 36: 427.Google Scholar
  241. Straus, W., 1964, Factors affecting the cytochemical reaction of peroxidase with benzidine and the stability of the blue reaction product, J. Histochem. Cytochem. 12: 462.PubMedCrossRefGoogle Scholar
  242. Sulkowski, E., Bjork, W., and Laskowski, M., Sr., 1963, A specific and nonspecific alkaline monophosphatase in the venom of Bothrops atrox and their occurrence in the purified venom phosphodiesterase, J. Biol. Chem. 238: 2477.PubMedGoogle Scholar
  243. Suran, A.A., 1974a, 5′-Nucleotidase and acid phosphatase of spinal cord: Quantitative histochemistry in cat and mouse substantia gelatinosa, J. Histochem. Cytochem. 22: 802.Google Scholar
  244. Suran, A.A., 19746, 5′-Nucleotidase and acid phosphatase of spinal cord: Quantitative histochemistry in cat and mouse spinal cords and in mouse brain, J. Histochem. Cytochem. 22: 812.Google Scholar
  245. Tatsuki, T., Iwanaga, S., and Suzuki, T., 1975, A simple method for preparation of snake venom phosphodiesterase almost free from 5′-nucleotidase, J. Biochem. 77: 831.PubMedGoogle Scholar
  246. Tsou, K.C., Cheng, C.S., Nachlas, M.M., and Seligman, A.M., 1956, Syntheses of some p-nitrophenyl substituted tetrazolium salts as electron acceptors for the demonstration of dehydrogenases, J. Am. Chem. Soc. 78: 6139.CrossRefGoogle Scholar
  247. Van der Krogt, J.A., 1974, Localisatie van enzymen van het catecholamine-metabolisme in rattehersenen, Thesis, University of Leiden, The Netherlands.Google Scholar
  248. Van der Meer, K., Mulder, J.J.C., and Lugtenburg, J., 1977, A new facet in rhodopsin photochemistry, Photochem. Photobiol 24: 363.CrossRefGoogle Scholar
  249. Van der Ploeg, M., and Van Duyn, P., 1964, 5,6-Dehydroxy indole as a substrate in a histochemical peroxidase reaction, J. R. Microsc. Soc. 83: 415.Google Scholar
  250. Van der Ploeg, M., Streefkerk, J.G., Daems, W.T., and Brederoo, P., 1973, Quantitative aspects of cytochemical peroxidase reactions with 3,3′-diaminobenzidine and 5,6-dehydroxy indole as substrates, in: Electron Microscopy and Cytochemistry ( E. Wisse, W.T. Daems, I. Molenaar, and P. Van Duyn, eds.), p. 123, North-Holland, Amsterdam.Google Scholar
  251. Van der Slik, W., 1975, Determination and diagnostic value of 5′-nucleotidase, Thesis (Krips Repro, ed.), University of London, Leiden, Meppel, The Netherlands.Google Scholar
  252. Van der Waart, 1974, Choline en cholinederivaten in rattehersenen, in vitro onderzoek over het metabolisme, Thesis (J.H. Pasmans, ed.), University of Leiden, Leiden Den Haag, The Netherlands.Google Scholar
  253. Van Dijke, C.P.H., 1975, Over de subcellulaire localisatie van dopamine in het striatum van de rat, Thesis (Krips Repro, ed.), University of Leiden, Meppel, The Netherlands.Google Scholar
  254. Van Duyn, P., 1953, Inactivation experiments on the DOPA factor, J. Histochem. Cytochem. 1: 143.CrossRefGoogle Scholar
  255. Van Duyn, P., 1955, An improved histochemical benzidone-blue peroxidase method and a note on the composition of the blue reactive product, Rec. Trav. Chim. Pays-Bas Belg. 74: 771.Google Scholar
  256. Van Duyn, P., 1957a, Histochemistry of DOPA factors. II. The nature of the localizing-mechanisms in the DOPA-reaction, Acta Physiol. Pharmacol. Neerl. 5: 413.Google Scholar
  257. Van Duyn, P., 19576, Histochemistry of DOPA factors. III. Inactivation experiments on the DOPA factors in neutrophilic and eosinophilic leucocytes and erythrocytes, Acta Physiol. Pharmacol. Neerl. 5: 428.Google Scholar
  258. Van Rossum, J., 1969, Corticonuclear and corticovestibular projections of the cerebellum, Thesis, Leiden University, Van Gorcum, Assen, The Netherlands.Google Scholar
  259. Vielvoye, G. J., 1970, Distribution and termination of spinocerebellar fibers in the cerebellum of the pigeon (Columbia domestica), Acta Morphol. Neerl.-Scand. 7: 367.Google Scholar
  260. Vielvoye, G.J., 1977, Spinocerebellar tracts in the white Leghorn (Gallus domesticus), Thesis (Krips Repro, ed.), University of Leiden, Meppel, The Netherlands.Google Scholar
  261. Vijverberg, A.J., 1973, Incorporation of tritiated thymidine in the wing and leg disks of Call, erythr. M., Neth.J. Zool. 23: 189–214.CrossRefGoogle Scholar
  262. Voogd, J., 1964, The cerebellum of the cat: Structure and fiber connections, Thesis University of Leiden, Van Gorcum, N.V., Assen, The Netherlands.Google Scholar
  263. Voogd, J., 1967, Comparative aspects of the structure and fibre connexions of the mammalian cerebellum, in: Progress in Brain Research, Vol. 25, The Cerebellum ( C.A. Fox and R.S. Snider, eds.), pp. 99–135, Elsevier, Amsterdam.Google Scholar
  264. Voogd, J., 1969, The importance of fiber connections in the comparative anatomy of the mammalian cerebellum, in: Neurobiology of Cerebellar Evolution and Development ( R. Llinas, ed.), Institute for Biomedical Research Symposium, Chicago.Google Scholar
  265. Voogd, J., Groenewegen, H.J., and Boesten, A.J.P., 1975, Olivo-cerebellar connections in the cat, The Kyoto Symposium (1975), Tokyo.Google Scholar
  266. Wachstein, M., and Meisel, E., 1957, Histochemistry of hepatic phosphates at a physiological pH: With special reference to the demonstration of bile canaliculi, AM. J. Clin. Pathol 27: 13.Google Scholar
  267. Wachstein, M., and Meisel, E., 1964, Demonstration of peroxidase activity in tissue sections, J. Histochem. Cytochem. 12: 538.PubMedCrossRefGoogle Scholar
  268. Walberg, F., 1956, Descending connections to the inferior olive: An experimental study in the cat, J. Comp. Neurol. 107: 77.CrossRefGoogle Scholar
  269. Walberg, F., 1974, Descending connections from the mesencephalon to the inferior olive: An experimental study in the cat, Exp. Brain. Res. 20: 145.Google Scholar
  270. Walberg, F., Brodal, A., and Hoddevik, G., 1976, A note on the method of retrograde transport of horseradish peroxidase as a tool in studies of afferent cerebellar connections, particularly those from the I.O.; with comments on the orthograde transport in Purkinje cell axons, Exp. Brain Res. 24: 383.Google Scholar
  271. Whittaker, V.P., Michaelson, J.A., and Kirkland, R.J.H., 1964, The separation of synaptic vesicles from nerve-ending particles (“synaptosomes”), Biochem. J. 90: 293.PubMedGoogle Scholar
  272. Williams, D., Gascoigne, J.E., and Williams, E.D., 1975a, A specific form of rat brain monoamine oxidase in circumventricular structures, Brain Res. 100: 231.PubMedCrossRefGoogle Scholar
  273. Williams, D., Gascoigne, J.E., and Williams, E.D., 1975b, A tetrazolium technique for the histochemical demonstration of multiple forms of rat brain monoamine oxidase, Histochem. J. 7: 585.CrossRefGoogle Scholar
  274. Winckler, J., 1970, Zum Einfrieren von Gewebe in Stickstoff-gekühlten Propan, Histochemie 23: 44.PubMedCrossRefGoogle Scholar
  275. Wisse, E., 1970, An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids, J. Ultrastruct. Res. 31: 125.PubMedCrossRefGoogle Scholar
  276. Wisse, E., 1972, An ultrastructural characterization of the endothelial cell in the rat liver sinusoid under normal and various experimental conditions, as a contribution to the distinction between endothelial and Kupffer cells, J. Ultrastruct. Res. 38: 528.PubMedCrossRefGoogle Scholar
  277. Wisse, E., 1974, Observations on the fine structure and peroxidase cytochemistry of normal rat liver Kupffer cells, J. Ultrastruct. Res. 46: 393.PubMedCrossRefGoogle Scholar

Bibliography for Standard Incubation Methods

  1. Lodja, Z., Gossrau, R., and Schiebler, T.H., 1979, Enzymehistochemistry, Springer Verlag, Berlin.Google Scholar
  2. Pearse, A.G.E., 1980, Histochemistry: Theoretical and Applied, Vol. 1, 4th ed., Churchill Livingstone, England.Google Scholar
  3. Pearse, A.G.E., 1972, Histochemistry: Theoretical and Applied, Vol. 2, 3rd ed., Churchill Livingstone, England.Google Scholar
  4. Burstone, M.S., 1972, Enzyme Histochemistry and Its Application in the Study of Neoplasms, Academic Press, New York.Google Scholar
  5. Spannhof, L., 1967, Einführung in die Praxis der Histochemie, Gustav Fisher Verlag, Jena.Google Scholar
  6. Critical evaluations on neuroenzyme histochemistry can be found in: Adams, C.W.M., 1965, Neurohistochemistry, Elsevier, Amsterdam.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • E. Marani
    • 1
  1. 1.Laboratory of Anatomy and EmbryologyUniversity of LeidenLeidenThe Netherlands

Personalised recommendations