Advertisement

Freeze—Fracturing

  • Karl H. Pfenninger

Abstract

After a rather controversial childhood, the freeze—fracture technique (Moor and Mühlethaler, 1963) has grown up to fulfill a very important role in modern cell biology and membrane research. With the development of the concept of integral membrane proteins (Singer and Nicolson, 1972; Bretscher, 1973), the visualization by freeze—fracture of distinct intramembranous structures, intramembranous particles (IMPs), has gained special significance in the search for structure—function relationships in biological membranes.

Keywords

Synaptic Vesicle Fracture Face Presynaptic Membrane Intramembranous Particle High Pressure Freezing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akert, K., Moor, H., Pfenninger, K., and Sandri, C., 1969, Contributions of new impregnation methods and freeze—etching to the problem of synaptic fine structure, in: Mechanisms of Synaptic Transmission (K. Akert and P. Waser, eds.), Prog. Brain Res. 31: 223–240.Google Scholar
  2. Akert, K., Pfenninger, K., Sandri, C., and Moor, H., 1972, Freeze—etching and cytochemistry of vesicles and membrane complexes in synapses of the central nervous system, in: Structure and Function of Synapses ( G.D. Pappas and D.P. Purpura, eds.), pp. 67–86, Raven Press, New York.Google Scholar
  3. Bachmann, L., and Schmitt-Fumian, W.W., 1973a, Spray-Freeze—etching of dissolved macro- molecules, emulsions and subcellular components, in: Freeze—etching: Techniques and Applications ( E.L. Benedetti and P. Favard, eds.), pp. 63–72, Société Française de Microscopie Electronique, Paris.Google Scholar
  4. Bachmann, L., and Schmitt-Fumian, W.W., 1973b, Spray—freezing and Freeze—etching, in: Freeze—Etching: Techniques and Applications ( E.L. Benedetti and P. Favard, eds.), pp. 73–79, Société Française de Microscopie Electronique, Paris.Google Scholar
  5. Benedetti, E.L., and Favard, P. (eds.), 1973, Freeze—etching: Techniques and Applications, Société Française de Microscopie Electronique, Paris.Google Scholar
  6. Böhler, S., 1976, Artefacts and Specimen Preparation Faults in Freeze—Etch Technology, Balzers Ak-tiengesellschaft, Liechtenstein.Google Scholar
  7. Branton, D., 1967, Fracture faces of frozen myelin, Exp. Cell Res. 45: 703–707.CrossRefGoogle Scholar
  8. Branton, D., 1974, Interpretation of freeze—etch results, in: Proceedings of the 8th International Congress on Electron Microscopy, Canberra, 1974, Vol. II, p. 28, Australian Academy of Science, Canberra.Google Scholar
  9. Branton, D., Bullivant, S., Gilula, N.B., Karnovsky, M.J., Moor, H., Mühlethaler, K., Northcote, D.H., Packer, L., Satir, B., Satir, P., Speth, V., Staehelin, L.A., Steere, R.L., and Weinstein, R.S., 1975, Freeze—etching nomenclature, Science 190: 54–56.PubMedCrossRefGoogle Scholar
  10. Bretscher, M.S., 1973, Membrane structure: Some general principles, Science 181: 622–629.PubMedCrossRefGoogle Scholar
  11. Chalcroft, J.P., and Bullivant, S., 1970, An interpretation of liver cell membrane and junction structure based on observation of freeze-fracture replicas of both sides of the fracture, J. Cell Biol. 47: 49–60.PubMedCrossRefGoogle Scholar
  12. Clark, A.W., and Branton, D., 1968, Fracture faces in frozen outer segments from the guinea pig retina, Z. Zellforsch. 91: 586–603.CrossRefGoogle Scholar
  13. Collins, T., Bartholomew, J., and Calvin, M., 1975, A simple method for freeze-fracture of monolayer cultures, J. Cell Biol. 67: 904–911.PubMedCrossRefGoogle Scholar
  14. Dempsey, G.P., and Bullivant, S., 1976, A copper block method for freezing non-cryoprotected tissues to produce ice-crystal-free regions for electron microscopy, J. Microsc. (Oxford) 106: 251–270.CrossRefGoogle Scholar
  15. Dreyer, F., Peper, K., Akert, K., Sandri, C., and Moor, H., 1973, Ultrastructure of the “active zone” in the frog neuromuscular junction, Brain Res. 62: 373–380.PubMedCrossRefGoogle Scholar
  16. Gilula, N.B., 1975, Junctional membrane structure, in: The Nervous System, Vol. I, The Basic Neurosciences ( D.B. Tower, ed.), pp. 1–11, Raven Press, New York.Google Scholar
  17. Gross, A., Bas, E., and Moor, H., 1978, Freeze-fracturing in ultrahigh vacuum at — 196°C, J. Cell Biol 76: 712–728.PubMedCrossRefGoogle Scholar
  18. Hanna, R.B., Hirano, A., and Pappas, G.D., 1976, Membrane specializations of dendritic spines and glia in the weaver mouse cerebellum: A freeze-fracture study, J. Cell Biol. 68: 403–410.PubMedCrossRefGoogle Scholar
  19. Heuser, J.E., Reese T.S., and Landis, D.M.D., 1974, Functional changes in frog neuromuscular junctions studied with freeze-fracture, J. Neurocytol. 3: 109–131.PubMedCrossRefGoogle Scholar
  20. Heuser, J.E., Reese, T.S., Dennis, M.J., Jan, Y., Jan, L., and Evans, L., 1979, Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release, J. Cell Biol 81: 275–300.PubMedCrossRefGoogle Scholar
  21. Hong, K., and Hubbell, W.L., 1972, Preparation and properties of phospholipid bilayers containing rhodopsin, Proc. Natl Acad. Sci. U.S.A. 69: 2617–2621.PubMedCrossRefGoogle Scholar
  22. Kirchanski, S., Elgsaeter, A., and Branton, D., 1979, Low temperature freeze fracturing to avoid plastic distortion, in: Freeze—Fracture: Methods, Artifacts, and Interpretations ( J.E. Rash and C.S. Hudson, eds.), pp. 149–152, Raven Press, New York.Google Scholar
  23. Landis, D.M., Reese, T.S., and Raviola, E., 1974, Differences in membrane structure between excitatory and inhibitory components of the reciprocal synapse in the olfactory bulb, J. Comp. Neurol 155: 67–92.PubMedCrossRefGoogle Scholar
  24. Livingston, R.B., Pfenninger, K., Moor, H., and Akert, K., 1973, Specialized paranodal and internodal glial-axonal junctions in the peripheral and central nervous system: A Freeze—etching study, Brain Res. 58: 1–24.PubMedCrossRefGoogle Scholar
  25. Moor, H., 1964, Die Gefrierfixation lebender Zellen und ihre Anwendung in der Elektronen-mikroskopie, Z. Zellforsch. 62: 546–580.CrossRefGoogle Scholar
  26. Moor, H., 1971, Recent progress in the Freeze—etching technique, Philos. Trans. R. Soc. London B 261: 121–131.CrossRefGoogle Scholar
  27. Moor, H., 1973a, Cryotechnology for the structural analysis of biological material, in: Freeze—Etching: Techniques and Applications ( E.L. Benedetti and P. Favard, eds.), pp. 11–20, Société Française de Microscopie Electronique, Paris.Google Scholar
  28. Moor, H., 1973b, Evaporation and electron guns, in: Freeze—Etching: Techniques and Applications ( E.L. Benedetti and P. Favard, eds.), pp. 27–30, Société Française de Microscopie Electronique, Paris.Google Scholar
  29. Moor, H., and Muhlethaler, K., 1963, Fine structure in frozen—etched yeast cells, J. Cell Biol. 17: 609–628.PubMedCrossRefGoogle Scholar
  30. Moor, H., Bellin, G., Sandri, C., and Akert, K., 1980, The influence of high pressure freezing on mammalian nerve tissue, Cell Tissue Res. (in press).Google Scholar
  31. Muhlethaler, K., 1973, History of freeze—etching, in: Freeze—Etching: Techniques and Applications ( E.L. Benedetti and P. Favard, eds.), pp. 1–10, Société Française de Microscopie Electronique, Paris.Google Scholar
  32. Nickel, E., and Potter, L.T., 1970, Synaptic vesicles in freeze-etched electric tissue of Torpedo, Brain Res. 23: 95–100.PubMedCrossRefGoogle Scholar
  33. Pfenninger, K.H., 1977, Cytology of the chemical synapse: Morphological correlates of synaptic function, in: Neurotransmitter Function ( W.S. Fields, ed.), pp. 27–57, Symposia Specialists, Miami.Google Scholar
  34. Pfenninger, K.H., 1978, Organization of neuronal membranes, Annu. Rev. Neurosci. 1: 445–471.CrossRefGoogle Scholar
  35. Pfenninger, K.H., and Bunge, R.P., 1974, Freeze-fracturing of nerve growth cones and young fibers: A study of developing plasma membrane, J. Cell Biol. 63: 180–196.PubMedCrossRefGoogle Scholar
  36. Pfenninger, K.H., and Rees, R.P., 1976, From the growth cone to the synapse: Properties of membranes involved in synapse formation, in: Neuronal Recognition ( S.H. Barondes, ed.), pp. 131–178, Plenum Press, New York.CrossRefGoogle Scholar
  37. Pfenninger, K.H., and Rinderer, E.R., 1975, Methods for the freeze-fracturing of nerve tissue cultures and cell monolayers, J. Cell Biol. 65: 15–28.PubMedCrossRefGoogle Scholar
  38. Pfenninger, K.H., and Rovainen, C.M., 1974, Stimulation- and calcium-dependence of vesicle attachment sites in the presynaptic membrane: A freeze-cleave study on the lamprey spinal cord, Brain Res. 72: 1–23.PubMedCrossRefGoogle Scholar
  39. Pfenninger, K., Sandri, C., Akert, K., and Eugster, C.H., 1969, Contribution to the problem of structural organization of the presynaptic area, Brain Res. 12: 10–18.PubMedCrossRefGoogle Scholar
  40. Pfenninger, K., Akert, K., Moor, H., and Sandri, C., 1971, Freeze-fracturing of presynaptic membranes in the central nervous system, Philos. Trans. R. Soc. London B 261: 387.CrossRefGoogle Scholar
  41. Pfenninger, K., Akert, K., Moor, H., and Sandri, C., 1972, The fine structure of freeze-fractured presynaptic membranes, J. Neurocytol. 1: 129–149.PubMedCrossRefGoogle Scholar
  42. Pinto da Silva, P., and Branton, D., 1970, Membrane splitting in Freeze—etching, J. Cell Biol. 45: 598–605.Google Scholar
  43. Plattner, H., Schmitt-Fumian, W.W., and Bachmann, L., 1973, Cryofixation of single cells by Spray—freezing, in: Freeze—Etching: Techniques and Applications (E.L. Benedetti and P. Favard, eds.), pp. 81–100, Société Française de Microscopie Electronique, Paris.Google Scholar
  44. Rash, J.E., 1979, The sectioned-replica technique: Direct correlation of freeze—fracture replicas and conventional thin-section images, in: Freeze-Fracture: Methods, Artifacts, and Interpretations ( J.E. Rash and C.S. Hudson, eds.), pp. 153–160, Raven Press, New York.Google Scholar
  45. Rash, J.E., and Hudson, C.S. (eds.), 1979, Freeze—Fracture: Methods, Artifacts, and Interpretations, Raven Press, New York.Google Scholar
  46. Rash, J.E., Graham, W.E., and Hudson, C.S., 1979, Sources and rates of contamination in a conventional Balzers freeze—etch device, in: Freeze—Fracture: Methods, Artifacts, and Interpretations ( J.E. Rash and C.S. Hudson, eds.), pp. 111–122, Raven Press, New York.Google Scholar
  47. Raviola, E., and Gilula, N.B., 1975, Intramembrane organization of specialized contacts in the outer plexiform layer of the retina: A freeze—fracture study in monkeys and rabbits, J. Cell Biol 65: 192–222.PubMedCrossRefGoogle Scholar
  48. Riehle, U., and Höchli, M., 1973, The theory and technique of high pressure freezing, in: Freeze—Etching: Techniques and Applications ( E.L. Benedetti and P. Favard, eds.), pp. 31–62, Société Française de Microscopie Electronique, Paris.Google Scholar
  49. Rosenbluth, J., 1976, Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain, J. Neurocytol, 5: 731–745.PubMedCrossRefGoogle Scholar
  50. Sandri, C., Akert, K., Livingston, R.B., and Moor, H., 1972, Particle aggregations at specialized sites in freeze-etched postsynaptic membranes, Brain Res. 41: 1–16.PubMedCrossRefGoogle Scholar
  51. Sandri, C., Van Buren, J.M., and Akert, K., 1976, Membrane morphology of the vertebrate nervous system, Prog. Brain Res. 46.Google Scholar
  52. Schnapp, B., and Mugnaini, E., 1975, The myelin sheath: Electron microscopic studies with thin sections and freeze—fracture, in: Golgi Centennial Symposium Proceedings ( M. Santini, ed.), pp. 209–233, Raven Press, New York.Google Scholar
  53. Schnapp, B., Petacchia, C., and Mugnaini, E., 1976, The paranodal axo—glial junction in the central nervous system studied with thin sections and freeze-fracture, Neuroscience 1: 181–190.PubMedCrossRefGoogle Scholar
  54. Singer, S.J., and Nicolson, G.L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175: 720–731.PubMedCrossRefGoogle Scholar
  55. Staehelin, L.A., 1974, Structure and function of intercellular junctions, Rev. Cytol. 39: 191 - 283.CrossRefGoogle Scholar
  56. Steere, R.L., and Moseley, M., 1969, New dimensions in Freeze—etching, in: 27th Annual Meeting, Electron Microscopy Society of America ( C.J. Arceneaux, ed.), pp. 202 — 203, Claitor’s, Baton Rouge.Google Scholar
  57. Steere, R.L., Erbe, E.F., and Moseley, J.M., 1979, Controlled contamination of freeze-fractured specimens, in: Freeze-Fracture: Methods, Artifacts, and Interpretations ( J.E. Rash and C.S. Hudson, eds.), pp. 99–109, Raven Press, New York.Google Scholar
  58. Streit, P., Akert, K., Sandri, C., Livingston, R.B., and Moor, H., 1972, Dynamic ultrastructure of presynaptic membranes at nerve terminals in the spinal cord of rats: Anesthetized and unanesthetized preparations compared, Brain Res. 48: 11–26.PubMedCrossRefGoogle Scholar
  59. Tillack, T.W., and Marchesi, V.T., 1970, Demonstration of the outer surface of freeze—etched red blood cell membranes, J. Cell Biol. 45: 649–653.PubMedCrossRefGoogle Scholar
  60. Tillack, T.W., Scott, R.E., and Marchesi, V.T., 1972, The structure of erythrocyte membranes studied by freeze—etching. II. Localization of receptors for phytohemagglutinin and influenza virus to the intramembranous particles, J. Exp. Med. 135: 1209–1227.PubMedCrossRefGoogle Scholar
  61. Van Harreveld, A., and Crowell, J., 1964, Electron microscopy after rapid freezing on a metal surface and substitution fixation, Anat. Rec. 149: 381–386.Google Scholar
  62. Van Harreveld, A., Trubatch, J., and Steiner, J., 1974, Rapid freezing and electron microscopy for the arrest of physiological processes, J. Microsc. (Oxford) 100: 189–198.CrossRefGoogle Scholar
  63. Wehrli, E., Mühlethaler, K., and Moor, H., 1970, Membrane structure as seen with a double replica method for freeze fracturing, Exp. Cell Res. 59: 336–339.CrossRefGoogle Scholar
  64. Wiley, C.A., and Ellisman, M.H., 1979, Development of axonal membrane specializations defines nodes of Ranvier and precedes Schwann cell myelin formation, J. Cell Biol. 83: 83a.Google Scholar
  65. Wood, M.R., Pfenninger, K.H., and Cohen, M.J., 1977, Two types of presynaptic configurations in insect central synapses: A freeze-fracture and cytochemical analysis, Brain Res. 130: 25–45.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Karl H. Pfenninger
    • 1
  1. 1.Department of AnatomyColumbia UniversityNew YorkUSA

Personalised recommendations