Advertisement

Enzyme Kinetics

  • P. Kontro
  • S. S. Oja

Abstract

Biological research has benefited greatly by studies on reaction kinetics; in particular, those carried out with enzyme-catalyzed reactions have been rewarding. Thorough kinetic analyses constitute an essential part in the characterization of any enzyme. In neurobiology, the general principles of enzyme kinetics have also been applied to phenomena other than metabolic reactions proper, e.g., carrier-mediated membrane transport, drug—receptor interactions, or transmitter-binding to postsynaptic membranes. Neurobiologists thus often need a basic knowledge of enzyme kinetics even if they are not directly involved in problems of enzymology and intermediary metabolism. It is to be regretted that at present, enzyme kinetic methods are frequently misused in neurobiology when sound consideration of their fundamental principles and inherent limitations is neglected. Furthermore, oversimplified treatment of data may be deceptive, leading to erroneous conclusions and wasting good experimental work. On the other hand, very elaborate treatment is difficult to accomplish successfully. Moreover, primary observations in biological experiments, in which an exact control of all contributing factors is not within the bounds of possibility, are seldom accurate enough for extremely sophisticated analyses.

Keywords

Substrate Concentration Enzyme Kinetic Reaction Velocity Succinate Semialdehyde Sequential Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrhenius, S., 1889, Über die Reaktionsgeschwindigkeit bei der Inversion von Rohr-Zucker durch Säuren, Z. Phys. Chem. 4: 226.Google Scholar
  2. Atkins, G.L., 1971a, A versatile digital computer program for non-linear regression analysis, Biochim. Biophys. Acta 252: 405.CrossRefGoogle Scholar
  3. Atkins, G.L., 1971b, Some applications of a digital computer program to estimate biological parameters by non-linear regression analysis, Biochim. Biophys. Acta 252: 421.CrossRefGoogle Scholar
  4. Barber, H.E., Welch, B.L., and Mackay, D., 1967, The use of the logarithmic transformation in the calculation of the transport parameters of a system that obeys Michaelis-Menten kinetics, Biochem.J. 103: 251.PubMedGoogle Scholar
  5. Bliss, C.J., and James, A.T., 1966, Fitting the rectangular hyperbola, Biometrics 22: 573.PubMedCrossRefGoogle Scholar
  6. Bridgers, W.F., 1969, Purification of mouse brain phosphoserine phosphohydrolase and phosphotransferase, Arch. Biochem. Biophys. 133: 201.CrossRefGoogle Scholar
  7. Briggs, G.E., and Haidane, J.B.S., 1925, A note on the kinetics of enzyme action, Biochem. J. 19: 338.PubMedGoogle Scholar
  8. Brown, A.J., 1902, Enzyme action, J. Chem. Soc. 81: 373.CrossRefGoogle Scholar
  9. Christensen, H.N., 1975, Biological Transport, Benjamin, New York.Google Scholar
  10. Cleland, W.W., 1963, The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations, Biochim. Biophys. Acta 67: 104.CrossRefGoogle Scholar
  11. Cleland, W.W., 1970, Steady state kinetics, in: The Enzymes, Vol. II ( P.D. Boyer, ed.), pp. 1–65, Academic Press, New York.CrossRefGoogle Scholar
  12. Cornish-Bowden, A., 1976, Principles of Enzyme Kinetics, Butterworths, London.Google Scholar
  13. Dixon, M., 1953, The determination of enzyme inhibitor constants, Biochem. J. 55: 170.PubMedGoogle Scholar
  14. Dixon, M., and Webb, E.C., 1964, Enzymes, Longmans, London.Google Scholar
  15. Dowd, J.E., and Riggs, D.S., 1965, A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations, J. Biol. Chem. 240: 863.PubMedGoogle Scholar
  16. Eadie, G.S., 1942, The inhibition of Cholinesterase by physostigmine and prostigmine,Biol. Chem. 146: 85.Google Scholar
  17. Eisenthal, R., and Cornish-Bowden, A., 1974, The direct linear plot: A new graphical procedure for estimating enzyme kinetic parameters, Biochem. J. 139: 715.PubMedGoogle Scholar
  18. Endrenyi, L., and Kwong, F.H.F., 1973, Some problems of estimating macromolecule-ligand binding parameters, Acta Biol. Med. Ger. 31: 495.Google Scholar
  19. Enzyme Committee, 1972, Enzyme Nomenclature, Elsevier, Amsterdam.Google Scholar
  20. Gabay, S., Achee, F.M., and Mentes, G., 1976, Some parameters affecting the activity of monoamine oxidase in purified bovine brain mitochondria, J. Neurochem. 27: 415.PubMedCrossRefGoogle Scholar
  21. Gâche, C., Rossi, B., and Lazdunski, M., 1976, (Na+, K+)-activated adenosinetriphosphatase of axonal membranes: Cooperativity and control. Steady-state analysis, Eur. J. Biochem. 65: 293.Google Scholar
  22. Guggenheim, E.A., 1926, On the determination of the velocity constant of a unimolecular reaction, Philos. Mag. Ser. VII 2: 538.Google Scholar
  23. Haldane, J.B.S., and Stern, K.G., 1932, Allgemeine Chemie der Enzyme, pp. 119–120, Steinkopf, Dresden and Leipzig.Google Scholar
  24. Hall, Z.W., and Kravitz, E.A., 1967a, The metabolism of 7-aminobutyric acid (GABA) in the lobster nervous system—I. GABA-glutamate transaminase, J. Neurochem. 14: 45.PubMedCrossRefGoogle Scholar
  25. Hall, Z.W., and Kravitz, E.A., 1967b, The metabolism of 7-aminobutyric acid (GABA) in theT lobster nervous system—II. Succinic semialdehyde dehydrogenase, J. Neurochem. 14: 55.PubMedCrossRefGoogle Scholar
  26. Hanes, C.S.; 1932, Studies of plant amylases. 1. The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley, Biochem. J. 26: 1406.Google Scholar
  27. Hanson, K.R., Ling, R., and Havir, E., 1967, A computer program for fitting data to the Michaelis—Menten equation, Biochem. Biophys. Res. Commun. 29: 194.CrossRefGoogle Scholar
  28. Henri, V., 1902, Théorié générale de l’action de quelques diastases, C. R. Acad. Sci. 135: 916.Google Scholar
  29. Henri, V., 1903, Lois Générales de l’Action des Diastases, Hermann, Paris.Google Scholar
  30. Hill, A. V., 1910, The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves, J. Physiol. (London) 40: I V.Google Scholar
  31. Hitchcock, D.J., 1926, The formal identity of Langmuir’s adsorption equation with the law of mass action, J. Am. Chem. Soc. 48: 2870.CrossRefGoogle Scholar
  32. Hoare, D.G., 1972, The temperature dependence of transport of L-leucine in human erythrocytes, J. Physiol. (London) 221: 311.Google Scholar
  33. Hofstee, B.H.J., 1959, Non-inverted versus inverted plots in enzyme kinetics, Nature (London) 184: 1296.CrossRefGoogle Scholar
  34. Hunter, A., and Downs, C.E., 1945, The inhibition of arginase by amino acids, J. Biol. Chem. 157: 427.Google Scholar
  35. Kammeraat, C., and Veldstra, H., 1968, Characterization of succinate semialdehyde dehydrogenase from rat brain, Biochim. Biophys. Acta 151: 1.CrossRefGoogle Scholar
  36. Kézdy, F.J., Jaz, J., and Bruylants, A., 1958, Cinétique de l’action de l’acide nitreux sur les amides. I. Méthode générale, Bull. Soc. Chim. Belg. 67: 687.CrossRefGoogle Scholar
  37. King, E.L., and Altman, C., 1956, A schematic method of deriving the rate laws for enzyme- catalyzed reactions, J. Phys. Chem. 60: 1375.CrossRefGoogle Scholar
  38. Kontro, P., and Oja, S. S., 1978, Taurine uptake by rat brain synaptosomes, J. Neurochem. 30: 1297.PubMedCrossRefGoogle Scholar
  39. Koshland, D.E., Jr., 1958, Application of a theory of enzyme specificity to protein synthesis, Proc. Natl. Acad. Sci. U.S.A. 44: 98.PubMedCrossRefGoogle Scholar
  40. Koshland, D.E., Jr., 1959, Enzyme flexibility and enzyme action, J. Cell. Comp. Physiol. 54 (Suppl.): 245.PubMedCrossRefGoogle Scholar
  41. Koshland, D.E., Jr., 1970, Molecular basis for enzyme regulation, in: The Enzymes, Vol. I ( P.D. Boyer, ed.), pp. 342–369, Academic Press, New York.Google Scholar
  42. Koshland, D.E., Jr., Némethy, G., and Filmée, D., 1966, Comparison of experimental finding data and theoretical models in proteins containing subunits, Biochemistry 5: 365.PubMedCrossRefGoogle Scholar
  43. Lähdesmäki, P., Pasula, M., and Oja, S.S., 1975, Effect of electrical stimulation and chlorpromazine on the uptake and release of taurine, γ-aminobutyric acid (GABA) and glutamic acid in mouse brain synaptosomes, J. Neurochem. 25: 675.PubMedCrossRefGoogle Scholar
  44. Laidler, K.J., and Bunting, P.S., 1973, The Chemical Kinetics of Enzyme Action, Clarendon Press, Oxford.Google Scholar
  45. Langmuir, J., 1916, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc. 38: 2221.CrossRefGoogle Scholar
  46. Langmuir, J., 1918, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40: 427.CrossRefGoogle Scholar
  47. Lineweaver, H., and Burk, D., 1934, The determination of enzyme dissociation constants, J. Am. Chem. Soc. 56: 658.CrossRefGoogle Scholar
  48. Martin, D.L., 1973, Kinetics of the sodium-dependent transport of gamma-aminobutyric acid by synaptosomes, J. Neurochem. 21: 345.PubMedCrossRefGoogle Scholar
  49. Martin, D.L., and Smith, A.A., III, 1972, Ions and the transport of gamma-aminobutyric acid by synaptosomes, J. Neurochem. 19: 841.PubMedCrossRefGoogle Scholar
  50. Michaelis, L., and Menten, M.L., 1913, Die Kinetik der Invertinwirkung, Biochem. Z. 49: 333.Google Scholar
  51. Monod, J., Wyman, J., and Changeux, J.-P., 1965, On the nature of allosteric transitions: A plausible model, J. Mol Biol. 12: 88.PubMedCrossRefGoogle Scholar
  52. Neame, K.D., and Richards, T.G., 1972, Elementary Kinetics of Membrane Carrier Transport, Blackwell, Oxford.Google Scholar
  53. Oja, S.S., 1968, Activity of aromatic aminotransferases in rat brain, Ann. Med. Exp. Fenn. 46: 541.PubMedGoogle Scholar
  54. Oja, S.S., 1974, Determination of transport rates in vivo, in: Research Methods in Neurochemistry, Vol. 2 ( N. Marks and R. Rodnight, eds.) pp. 183–216, Plenum Press, New York.CrossRefGoogle Scholar
  55. Oja, S.S., and Vahvelainen, M.-L., 1975, Transport of amino acids in brain slices, in: Research Methods in Neurochemistry, Vol. 3 ( N. Marks and R. Rodnight, eds.), pp. 67–137, Plenum Press, New York.CrossRefGoogle Scholar
  56. O’Sullivan, C., and Thompson, F.W., 1890, Method of estimating and recording the activity of preparation of invertase, J. Chem. Soc. 57: 865.Google Scholar
  57. Paumgartner, G., Huber, J., and Grabner, G., 1969, Kinetik der hepatischen Farbstoffaufnahme von Indocyaningrün: Einfluss von Bilirubin und Natriumglykocholat, Experientia 25: 1219.PubMedCrossRefGoogle Scholar
  58. Plowman, K.M., 1972, Enzyme Kinetics, McGraw-Hill, New York.Google Scholar
  59. Potter, L.T., 1972, Synthesis, storage and release of acetylcholine from nerve terminals, in: The Structure and Function of Nervous Tissue, Vol. IV ( G.H. Bourne, ed.), pp. 105–128, Academic Press, New York.CrossRefGoogle Scholar
  60. Scatchard, G., 1949, The attractions of proteins for small molecules and ions, Ann. N. Y. Acad. Sci. 51:660.CrossRefGoogle Scholar
  61. Segel, I.H., 1975, Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems, Wiley, New York.Google Scholar
  62. Swinbourne, E.S., 1960, Method for obtaining the rate coefficient and final concentration of a first order reaction, J. Chem. Soc. 2371.Google Scholar
  63. Swoboda, P.A.T., 1957, The kinetics of enzyme action, Biochim. Biophys. Acta 23: 70.CrossRefGoogle Scholar
  64. Taketa, K., and Pogell, B.M., 1965, Allosteric inhibition of rat liver fructose 1,6-diphosphatase by adenosine 5′-monophosphate, J. Biol Chem. 240: 651.PubMedGoogle Scholar
  65. Vahvelainen, M.-L., and Oja, S.S., 1972, Kinetics of influx of phenylalanine, tyrosine, tryptophan, histidine and leucine into slices of brain cortex from adult and 7-day-old rats, Brain Res. 40: 477.PubMedCrossRefGoogle Scholar
  66. Van Leuven, F., 1976, Glutamine transaminase from brain tissue: Further studies on kinetic properties and specificity of the enzyme, Eur. J. Biochem. 65: 271.PubMedCrossRefGoogle Scholar
  67. Van Slyke, D.D., and Cullen, G.E., 1914, The mode of action of urease and of enzymes in general, J. Biol Chem. 19: 141.Google Scholar
  68. Van’t Hoff, J.H., 1884, Etudes de Dynamique Chimique, pp. 114–118, Muller, Amsterdam.Google Scholar
  69. Wilkinson, G.N., 1961, Statistical estimations in enzyme kinetics, Biochem. J. 80: 324.PubMedGoogle Scholar
  70. Wong, J.T.-F., 1975, Kinetics of Enzyme Mechanisms, Academic Press, London.Google Scholar
  71. Woolf, B., 1932, cited by Haldane and Stern (1932).Google Scholar
  72. Wu, J.-Y., 1976, Purification, characterization and kinetic studies of GAD and GABA-T from mouse brain, in: GAB A in Nervous System Function ( E. Roberts, T.N. Chase, and D.B. Tower, eds.), pp. 7–55, Raven Press, New York.Google Scholar
  73. Wurtz, A., 1880, Sur la papaine: Nouvelle contribution à l’histoire des ferments solubles, C. R. Acad. Sci. 91: 787.Google Scholar
  74. Young, A.B., and Snyder, S.H., 1974a, Strychnine binding in rat spinal cord membranes associated with the synaptic glycine receptor: Cooperativity of glycine interactions, Mol. Pharmacol 10: 790.Google Scholar
  75. Young, A.B., and Snyder, S.H., 1974b, Glycine synaptic receptor: Evidence that strychnine binding is associated with the ionic conductance mechanism, Proc. Natl Acad. Sci. U.S.A. 71: 4002.PubMedCrossRefGoogle Scholar
  76. Zydowo, M., Kaletha, K., and Dudek, A., 1971, Computer statistical analysis of the Michaelis constant estimations, Acta Biochim. Pol 18: 367.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • P. Kontro
    • 1
  • S. S. Oja
    • 1
  1. 1.Department of Biomedical SciencesUniversity of TampereTampereFinland

Personalised recommendations