Skip to main content

Single-Cell Isolation and Analysis

  • Chapter
  • 107 Accesses

Abstract

The human brain has approximately 1010 nerve cells, and this vast population of neurons presents a formidable challenge to the biologist trying to understand how the nervous system works. The great structural complexity of the nervous system and the consequent difficulty in interpreting gross observations were enough to stimulate numerous early attempts to study isolated individual units. In fact, Deiters (1865), more than 100 years ago, published excellent drawings of neurons he dissected from the anterior horn of the spinal cord. It is now clear, from the mass of electrophysiological and electron-microscopic data that has accumulated, that nerve cells are independent units that are interrelated in complex ways (see, for example, Bullock, 1967; Bullock and Horridge, 1965; Eccles, 1964; Segundo, 1970; Horridge, 1968). Thus, one classic approach by the biochemist trying to elucidate the complex structure of the brain is to separate the component parts (e.g., neurons, glia, myelin, nuclei, synaptosomes, synaptic vesicles) and study them in isolation (see, for example, Rose, 1967; Whittaker, 1968, 1973; Poduslo and Norton, 1972). Studies of this kind by the biochemist have many advantages, but they can suffer from certain drawbacks such as the possibility that changes in the constituents may be caused by the elaborate separation or fractionation procedures employed. Moreover, any differences there may be in the properties of similar structures obtained from the brain cannot be observed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson, R.P., McCaman, M.W., and MaCaman, R.E., 1974, Fentamole level analysis of biogenic amines and amino acids using functional group mass spectrometry, Anal. Biochem. 51: 482–499.

    Google Scholar 

  • Althaus, H.H., and Neuhoff, V., 1973, One-dimensional microchromatography of phospholipids and neutral lipids on sodium silicate-impregnated silica gel layers, Hoppe-Seyler’s Z. Physiol. Chem. 354: 1073–1076.

    Article  CAS  Google Scholar 

  • Althaus, H.H., Osborne, N.N., and Neuhoff, V., 1973, Mikrochromatographische Extraktion und Fraktionierung von Lipiden einzelner Nervenzellen von Helixpomatia, Naturwissenschaften 60: 553–554.

    Article  PubMed  CAS  Google Scholar 

  • Barker, D.L., Herbert, E., Hildebrand, J.G., and Kravitz, E.A., 1972, Acetylcholine and lobster sensory neurones, J. Physiol. 226: 205–209.

    PubMed  CAS  Google Scholar 

  • Been, A.C., and Rasch, E.M., 1972, A vertical microsystem for discontinuous electrophoresis of insect tissue proteins using thin sheets of polyacrylamide gel, J. Histochem. Cytochem. 20: 368–384.

    Article  PubMed  CAS  Google Scholar 

  • Bell, C.E., and Sommerville, A.R., 1966, A new fluorescence method for detection and possible quantitative assay for some catecholamine and tryptamine derivatives on paper, Biochem. J. 98: 1c–3c.

    PubMed  CAS  Google Scholar 

  • Bocharova, L.S., Kostenko, M.A., Veprintov, B.N., and Allachverov, B.L., 1975, Completely isolated molluscan neurons: An ultrastructural study, Brain Res. 101: 185 — 198.

    Article  Google Scholar 

  • Bondareff, W., and Hyden, H., 1969, Submicroscopic structure of single neurons isolated from rabbit lateral vestibular nucleus, J. Ultrastruct. Res. 26: 399–411.

    Article  PubMed  CAS  Google Scholar 

  • Boulton, A.A., 1968, The automated analysis of absorbent and fluorescent substances separated on paper strips, in: Methods in Biochemical Analysis, Vol. 16 ( D. Glick, ed.), pp. 327–363, Interscience, New York.

    Chapter  Google Scholar 

  • Boulton, A.A., and Majer, J.R., 1972, Detection and quantitative analysis of some noncatecholic primary aromatic amines, in: Research Methods in Neurochemistry, Vol. 1 ( N. Marks and R. Rodnight, eds.), pp. 341–356, Plenum Press, New York.

    Chapter  Google Scholar 

  • Briel, G., Neuhoff, V., and Meier, M., 1972, Microanalysis of amino acids and their determination in biogenic material using dansyl chloride, Hoppe-Seyler’s Z. Physiol. Chem. 253: 540–553.

    Article  Google Scholar 

  • Brown, J.P., and Perman, R.N., 1973, A highly sensitive method for amino acid analysis by a double isotope labelling technique using dansyl chloride, Eur. J. Biochem. 39: 69–75.

    Article  PubMed  CAS  Google Scholar 

  • Brownstein, M.J., Saavedra, J.M., and Axelrod, J., 1973, Control of N-acetylserotonin by a p-adrenergic receptor, Mol. Pharmacol. 9: 605–611.

    CAS  Google Scholar 

  • Brownstein, M.J., Saavedra, J.M., Axelrod, J., Zeman, G.H., and Carpenter, D.O., 1974, Coexistence of several putative neurotransmitters in single identified neurons of Aplysia, Proc. Natl. Acad. Sci. U.S.A. 71: 4662–4685.

    Article  PubMed  CAS  Google Scholar 

  • Bullock, T.H., 1967, Signals and neuronal coding, in: The Neurosciences: A Study Program ( G.C. Quarton, T. Melnechuk, and F.O. Schmitt, eds.), pp. 347–452, Rockefeller University Press, New York.

    Google Scholar 

  • Bullock, T.H., and Horridge, G.A., 1965, Structure and Function in the Nervous Systems of Invertebrates, W.H. Freeman, San Francisco.

    Google Scholar 

  • Carlsson, B., Giacobini, E., and Hovmark, S., 1967, An instrument for simultaneous determination of sodium and potassium in microsamples of biological material, Acta Physiol. Scand. 71: 379–390.

    CAS  Google Scholar 

  • Casola, L., and di Matteo, G., 1972, Studies on the dansylation reaction by use of 14C-dansyl chloride application to the analysis of free amino acids in rat optic nerve, Anal. Biochem. 38: 316–321.

    Google Scholar 

  • Catsimpoolas, N., 1968, Micro-isolectric focusing in Polyacrylamide gel columns, Anal. Biochem. 26: 480–482.

    CAS  Google Scholar 

  • Chen, C.F., von, Baumgarten, R., and Tandeda, K., 1971, Pacemaker properties of completely isolated neurons in Aplysia californica, Nature (London) 233: 27–29.

    CAS  Google Scholar 

  • Chen, C.F., von Baumgarten, R., and Harth, O., 1973, Metabolic aspects of the rythmogenisis in Aplysia pacemaker neurons, Pfluegers Arch. Gesamte Physiol. 345: 179–193.

    Article  CAS  Google Scholar 

  • Coggeshall, R.E., Kandel, E.R., Kupferman, I., and Waziri, R., 1966, A morphological and functional study on a cluster of identifiable neurosecretory cells in the abdominal ganglia of Aplysia californica, J. Cell Biol. 31: 363–368.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M.J., and Jacklet, J.W., 1965, Neurons of insects: RNA changes during injury regeneration. Science 148: 1237–1239.

    Article  PubMed  CAS  Google Scholar 

  • Cottreil, G.A., and Osborne, N.N., 1970, Subcelluar localisation of serotonin in an indendfied serotonin-containing neuron, Nature (London) 225: 470–472.

    Article  Google Scholar 

  • Coyle, J.T., 1975, A practical introduction to radiometric enzymatic assays in psychopharmacology, in: Handbook of Psychopharmacology, Vol. 1 ( L.L. Iversen, S.D. Iversen, and S.H. Snyder, eds.), pp. 71–100, Plenum Press, New York.

    Google Scholar 

  • Coyle, J.T., and Henry, D., 1973, Catecholamines in the fetal and newborn rat brain, J. Neurochem. 21: 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Cremer, T., Dames, W., and Neuhoff, V., 1972, Microdisc electrophoresis and quantitative assay of glucose-6-phosphate dehydrogenase at the cellular level, Hoppe-Seyler’s Z. Physiol. Chem. 353: 1317–1329.

    Article  CAS  Google Scholar 

  • Dale, G., and Latner, A., 1968, Isoelectric focusing in Polyacrylamide gels, Lancent 1: 847–848.

    Article  CAS  Google Scholar 

  • Dames, W., and Maurer, H.R., 1974, Simultaneous preparation for electrophoresis of a large number of micro Polyacrylamide gels with continuous concentration gradients, in: Electrophoresis and Isoelectric Focusing in Polyamide Gel (R.C. Allen and H.R. Maurer, eds.), pp. 221–231, de Gryter, Berlin and New York.

    Google Scholar 

  • Deiters, O., 1865, Untersuchungen über Gehirn und Rückenmark des Menschen und der Säugetiere, von M. Schulze, Braunschweig ( Brunswick ), Germany.

    Google Scholar 

  • Dewhurst, S.A., 1972, Choline phospokinase activities in ganglia and neurons of Aplysia, J. Neurochem. 19: 2217–2219.

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J.C., 1964, The Physiology of Synapses, Academic Press, New York.

    Book  Google Scholar 

  • Edström, J.E., 1956, Separation and determination of purines and pyridine nucleotides in picogram amounts, Biochim. Biophys. Acta 22: 378–388.

    Article  Google Scholar 

  • Edström, J.E., 1964, Microextraction and microelectrophoresis for determination and analysis of nucleic acids in isolated cellular units, in: Methods in Cell Physiology, Vol. I ( D.M. Prescott, ed.), pp. 417–447, Academic Press, New York.

    Chapter  Google Scholar 

  • Edström, J.E., and Kawiak, J., 1961, Microchemical deoxyribonucleic acid determination in individual cells, J. Biophys. Biochem. Cytol. 9: 619–616.

    Article  PubMed  Google Scholar 

  • Edström, J.E., and Neuhoff, V., 1973, Micro-electrophoresis for RNA and DNA base analysis, in: Micromethods in Molecular Biology ( V. Neuhoff, ed.), pp. 215––256. Springer-Verlag, Berlin.

    Google Scholar 

  • Folch, J., Lees, M., and Sloane-Stanley, G.H., 1957, A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem. 226: 497–509.

    PubMed  CAS  Google Scholar 

  • Frazier, W.T., Kandel, E.R., Kupferman, I., Waziri, R., and Coggeshall, R.E., 1957, Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia californica, J. Neurophysiol. 30: 1287–1351.

    Google Scholar 

  • Gainer, H., 1971, Microdisc electrophoresis in sodium dodecyl sulphate: An application to the study of protein synthesis in individual, identified neurons, Anal. Biochem. 44: 589–605.

    CAS  Google Scholar 

  • Gainer, H., 1972, Patterns of protein synthesis in individual, identified molluscan neurons, Brain Res. 39: 369–385.

    Article  PubMed  CAS  Google Scholar 

  • Gainer, H., 1973, Isoelectric focusing of proteins at the 10-10 and 10-9g level, Anal. Biochem. 51: 646–650.

    CAS  Google Scholar 

  • Giacobini, E., 1956, Histochemical demonstration of AChE activity in isolated nerve cells, Acta Physiol Scand. 36: 276–290.

    Article  PubMed  CAS  Google Scholar 

  • Giacobini, E., 1959, The distribution and localisation of cholinesterase in nerve cells, Acta Physiol. Scand. Suppl. 156: 1–54.

    Google Scholar 

  • Giacobini, E., 1964, in: Morphological and Biochemical Correlates of Neural Activity (M.M. Cohen and R.S. Snider, eds.), pp. 15–31, Harper and Row, New York.

    Google Scholar 

  • Giacobini, E., 1968, Chemical studies on Individual Neurons: Part I, in: Neurosciences Research, Vol. 1 ( S. Ehrenpreis and O.C. Solnitzky, eds.), pp. 1–66, Academic Press, New York.

    Google Scholar 

  • Giacobini, E., 1969, Chemical studies on individual neurons: Part II, in: Neurosciences Research, Vol. 2 ( S. Ehrenpreis and O.C. Solnitzky, eds.), pp. 112–198, Academic Press, New York.

    Google Scholar 

  • Giacobini, E., 1970, Biochemistry of single neuronal models, in: Biochemical Psychopharmacology, Vol. 2 ( E. Costa and E. Giacobini, eds.), pp. 9–64. Raven Press, New York.

    Google Scholar 

  • Giacobini, E., 1975, The use of microchemical techniques for the identification of new transmitter molecules in neurons, J. Neurosci. Res. 1: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Giller, E., and Schwartz, J.H., 1971, Choline acetyltransferase in identified neurons of the abdominal ganglion of Aplysia californica, J. Neurophysiol. 34: 108–115.

    PubMed  CAS  Google Scholar 

  • Gray, W.R., 1972, End-group analysis using dansyl chloride, Methods Enzymol. 25: 121–138.

    Article  PubMed  CAS  Google Scholar 

  • Grossbach, U., 1965, Acrylamide gel electrophoresis in capillary columns, Biochim. Biophys. Acta 107: 180–182.

    Article  CAS  Google Scholar 

  • Grossbach, U., 1971, Chromosomen-Struktur und Zell-Funktion, Mitt. Max-Planck-Ges. 2: 93–108.

    Google Scholar 

  • Haljamäe, H., and Larsson, S., 1968, An ultramicroflame photometer for K and Na analysis of single cells and nanoliter quantities of biological fluids, Chem. Instrum. 1: 131–144.

    Article  Google Scholar 

  • Haljamäe, H., and Waldman, A.A., 1972, Flame photometry at the cell level, in: Techniques of Biochemical and Biophysical Morphology, Vol. 1 ( D. Glick and R.M. Rosenbaum, eds.), pp. 233–268. John Wiley, New York.

    Google Scholar 

  • Hazama, H., and Uchimura, H., 1972, Separation of lactate dehydrogenase isoenzymes of nerve cells in the central nervous system by micro-disc electrophoresis on Polyacrylamide gels, Biochim. Biophys. Acta 200: 414–417.

    Google Scholar 

  • Heyneman, R.A., Bernard, D.M., and Vercauteren, R.E., 1972, Direct fluorometric microdeter- mination of phospholipids on thin-layer chromatograms, J. Chromatogr. 68: 285–288.

    Article  PubMed  CAS  Google Scholar 

  • Hezel, U., 1973, Direkte quantitative Photometrie and Dünnschicht-Chromatogrammen, Angew. Chem. 85: 334–342.

    CAS  Google Scholar 

  • Hildebrand, J.G., Barker, D.L., Herbert, E., and Kravitz, E.A., 1971, Screening for neurotransmitters: A rapid radiochemical procedure, J. Neurobiol. 2: 231–246.

    Article  PubMed  CAS  Google Scholar 

  • Hillman, H., and Hyden, H., 1965, Membrane potentials in isolated neurones in vitro from Deiters’ nucleus of rabbit, J. Physiol. 177: 398–410.

    PubMed  CAS  Google Scholar 

  • Holter, H., 1961, The Cartesian diver, in: General Cytochemical Methods, Vol. 2 ( J. Danieli ed.), pp. 93–128. Academic Press, New York.

    Chapter  Google Scholar 

  • Horridge, G.A., 1968, Interneurons, W.H. Freeman, San Francisco.

    Google Scholar 

  • Hubmann, F.-H., 1973, Two-step, two-dimensional development thin-layer chromatography of lipids on a microscale, J. Chromatogr. 86: 197–199.

    Article  PubMed  CAS  Google Scholar 

  • Hydèn, H., 1959, Quantitative assay of compounds in isolated, fresh nerve cells and glial cells from control and stimulated animals, Nature (London) 184: 433–435.

    Article  Google Scholar 

  • Hydèn, H., 1960, The neuron, in: The Cell, Vol. IX ( J. Brächet and A. Mirsky, eds.), pp. 215–323. Academic Press, New York.

    Google Scholar 

  • Hydèn, H., 1964, Biochemical and functional interplay between neuron and glia, in: Recent Advances in Biological Psychiatry, Vol. VI ( J. Wortis, ed.), pp. 31–52, Plenum Press, New York.

    Google Scholar 

  • Hydèn, H., 1972, Macromolecules and behavior, in: Arthur Thomson Lectures ( G.B. Ansell and P.B. Bradley eds.), pp. 3–75, Macmillan, London.

    Google Scholar 

  • Hydèn, H., and Pigon, A., 1960, A cytophysiological study of the functional relationship between oligodendroglial cells and nerve cells of Deiters’ nucleus, J. Neurochem. 6: 57–72.

    Article  PubMed  Google Scholar 

  • Hydèn, H., and Rönnbäch, L., 1975, Membrane-bound S-100 protein on nerve cells and its distribution, Brain Res. 100: 615–628.

    Article  PubMed  Google Scholar 

  • Hydèn, H., Bjurstam, K., and McEwen, B., 1966, Protein at the cellular level by microdisc electrophoresis, Anal. Biochem. 17: 1–15.

    Google Scholar 

  • Jacobowitz, D.M., 1974, Removal of discrete fresh regions of the rat brain, Brain Res. 80: 111–115.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, P.V., and Roots, B.I., 1972, Nerve Membranes, Vol. 36, Pergamon Press, Oxford and New York.

    Google Scholar 

  • Joseph, M.H., and Halliday, J., 1975, A dansylation microassay for some amino acids in brain, Anal. Biochem. 64: 389–402.

    CAS  Google Scholar 

  • Jovin, T.M., Dante, L.M., and Chrambach, A., 1970, Multiphorese buffer systems output, Publ. Nos. 196085–196091 and 203016, National Information Service, Springfield, Virginia.

    Google Scholar 

  • Kandel, E.R., Frazier, W.T., Waziri, R., and Coggeshall, R.E., 1957, Direct and common connections among identified neurons in Aplysia, J. Neurophysiol. 30: 1352–1376.

    Google Scholar 

  • Katz, G.M., 1968, Another look at ultramicro integrative flame photometry, Anal. Biochem. 26: 381–397.

    CAS  Google Scholar 

  • Kerkut, O.A., 1969, Neurochemistry of invertebrates, in: Handbook of Neurochemistry, Vol. II ( A. Lajthe, ed.), pp. 539–562, Plenum Press, New York.

    Google Scholar 

  • Kerkut, O.A., Lambert, J.D.C., Gayton, R.J., Loker, J.E., and Walker, R.J., 1975, Mapping of nerve cells in the suboesophageal ganglia of Helix espera, Comp. Biochem. Physiol. 50A: 1–25.

    Article  CAS  Google Scholar 

  • Keleti, G., and Lederer, W.H., 1974, Micromethods for the Biological Sciences, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Kleinig, H., and Lempert, U., 1970, Phospholipid analysis on a micro scale, J. Chromatogr. 53: 595–597.

    Article  CAS  Google Scholar 

  • Koenig, E., and Brattgård, S.O., 1963, A quantitative micromethod for determination of specific radioactivity of 3H-purines and 3H-pyrimidines, Anal. Biochem. 6: 424–434.

    CAS  Google Scholar 

  • Kostenko, M.A., 1972, The isolation of single nerve cells of the brain of the mollusc Lymnaea stagnalis for their further cultivation in vitro, Tsitologia 14: 1274–1279 (in Russian).

    CAS  Google Scholar 

  • Kostenko, M.A., Geletyuk, V.I., and Veprintsev, B.N., 1974, Completely isolated neurons in the mollusc Lymnaea stagnalis: A new objective for nerve cell biology investigation, Comp. Biochem. Physiol. 49A: 89–100.

    Article  CAS  Google Scholar 

  • Kronberg H., Zimmer H.-G., and Neuhoff, V., 1978, Automatische Fluorimetrik von Mikro-Dünnschicht-Chromatogrammen, Z. Anal. Chem. 290: 2145–2150.

    Google Scholar 

  • Lam, D.M.K., Wiesel, T.N., and Kaneko, A., 1974, Neurotransmitter synthesis in cephalopod retina, Brain Res. 82: 365–368.

    Article  PubMed  CAS  Google Scholar 

  • Laverty, R., and Sharman, D.F., 1965, The estimation of small quantities of 3,4-dihydroxyphen-ylethylamine in tissues, Br. J. Pharmacol. 24: 538–548.

    CAS  Google Scholar 

  • Leonard, B.E., and Osborne, N.N., 1974, The use of dansyl-chloride for the detection of amino acids and serotonin in nervous tissue, in: Research Methods in Neurochemistry, Vol. 3 ( N. Marks and R. Rodnight, eds.), pp. 443–462, Plenum Press, New York.

    Google Scholar 

  • Linderström-Lang, K., 1973, Principle of Cartesian diver applied to gasometric technique, Nature (London) 140: 108.

    Article  Google Scholar 

  • Lowry, O.H., 1952, The quantitative histochemistry of the brain, Science 116: 526.

    Google Scholar 

  • Lowry, O.H., 1953, The quantitative histochemistry of the brain, J. Histochem. Cytochem. 1: 420–428.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O.H., 1963, The chemical study of single neurons, Harvey Lect. 58: 1–19.

    PubMed  CAS  Google Scholar 

  • Lowry, O.H., and Passonneau, J.V., 1972, A Flexible System of Enzymatic Analysis, Academic Press, New York.

    Google Scholar 

  • Maickel, R.P., and Miller, F.P., 1966, Fluorescent products formed by reaction of indole derivatives with o-phthaldehyde, Anal. Chem. 38: 1937–1938.

    CAS  Google Scholar 

  • Malnic, G., Klose, R.M., and Giebisch, G., 1964, Micropuncture study of renal potassium excretion in the rat, Am. J. Physiol. 206: 674–686.

    PubMed  CAS  Google Scholar 

  • Maurer, H.R., and Dati, F.A., 1972, Polyacrylamide gel electrophoresis on microslabs, Anal. Biochem. 46: 19–32.

    CAS  Google Scholar 

  • McCaman, R.E., 1968, Application of tracers to quantitative biochemical and cytochemical studies, in: Advances in Tracer Methodology, Vol. 4 ( S. Rothchild, ed.), pp. 137–202, Plenum Press, New York.

    Google Scholar 

  • McCaman, R.E., 1971, Quantitative isotopic methods for measuring enzyme activities and endogenous substrate levels, in: International Encyclopedia of Pharmacology and Therapeutics, Sect. 78, pp. 275–314, Pergamon Press, New York.

    Google Scholar 

  • McCaman, R.E., and Dewhurst, S.A., 1970, Choline acetyltransferase in individual neurons of Aplysia californica, J. Neurochem. 17: 1421–1426.

    Article  PubMed  CAS  Google Scholar 

  • MacCaman, R.E., and Dewhurst, S.A., 1971, Metabolism of putative transmitters in individual neurons of Aplysia calif ornica, J. Neurochem. 18: 1329–1335.

    Article  Google Scholar 

  • McCaman, M.W., Weinreich, D., and McCaman, R.E., 1973, The determination of picomole levels of 5-hydroxytryptamine and dopamine in Aplysia, Tritonia and leech nervous tissues, Brain Res. 53: 129–137.

    Article  PubMed  CAS  Google Scholar 

  • Milinoff, P.C., Landsberg, L., and Axelrod, J., 1969, An enzymatic assay for octopamine and other β-hydroxylated phenylethylamines, J. Pharmacol. Exp. Ther. 170: 253–261.

    Google Scholar 

  • Mtiller, P., 1958, Experiments on current flow and ionic movements in single myelinated nerve fibres, Exp. Cell Res. Suppl. 5: 118–152.

    Google Scholar 

  • Nagatsu, T., 1973, Biochemistry of Catecholamines, University Park Press, Baltimore, London, and Tokyo.

    Google Scholar 

  • Neadle, D.J., and Pollitt, R.J., 1965, The formation of l-dimethylaminonaphthalene-5-sulphon-amide during the preparation of l-dimethylaminonaphthalene-5-sulphonylamino acids, Biochem. J. 97: 607–608.

    PubMed  CAS  Google Scholar 

  • Neuhoff, V., 1968, Micro-disc-electrophorese von Hirnproteinen, Arzneim.-Forsch. 18: 35–38.

    CAS  Google Scholar 

  • Neuhoff, V (ed.), 1973, Micromethods in Molecular Biology, Springer-Verlag, Berlin.

    Google Scholar 

  • Niederwieser, A., 1972, Thin layer chromatography of amino acids and derivatives, Methods Enzymol. 25: 60–99.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, J.G., and Baylor, D.A., 1969, The specificity and functional role of individual cells in a simple central nervous system, Endeavor 29: 3–7.

    Google Scholar 

  • Osborne, N.N., 1971, A micro-chromatographic method for the detection of biologically active monoamines from isolated neurons, Experientia 25: 1502–1513.

    Article  Google Scholar 

  • Osborne, N.N., 1973, The analysis of amines and amino acids in microquantities of tissue, in: Progress in Neurobiology, Vol. 1, Part 4 ( G.A. Kerkut and J.W. Phillis, eds.), pp. 299–329, Pergamon Press, Oxford.

    Google Scholar 

  • Osborne, N.N., 1974, Microchemical Analysis of Nervous Tissue, Pergamon Press, Oxford and New York.

    Google Scholar 

  • Osborne, N.N., and Neuhoff, V., 1973, Neurochemical studies on characterised neurons, Naturwissenschaften 60: 78–87.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, N.N., Szczepaniak, A.C., and Nenhoff, V., Amines and amino acids in identified neurons of Helixpomatia, Int. J. Neurosci. 5: 125–131.

    Google Scholar 

  • Osborne, N.N., and Pentreath, V.W., 1976, Effects of 5,7-dihydroxytryptamine on an identified 5-hydroxytryptamine-containing neurone in the central nervous system of the snail Helix pomatia, Br. J. Pharmacol. 56: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, N.N., and Riichel, R., 1975, Fractionation of proteins from single neurons of Planorbis corneus by microelectrophoresis on SDS-gradient polyacrylamide gels, J. Chromatogr. 105: 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, N.N., Priggemeier, E., and Neuhoff, V., 1975, Dopamine metabolism in characterised neurons of Planorbis corneus, Brain Res. 90: 261–271.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, N.N., Stahl, W.L., and Neuhoff, V., 1976, Separation of amino acids as mansyl derivatives on poly amide layers J. Chromatogr. 123: 212–215.

    Article  PubMed  CAS  Google Scholar 

  • Otsuka, M., Obata, K., Migata, Y., and Tanaka, T., 1971, Measurement of γ-aminobutyric acid in isolated nerve cells of cat central neurons, J. Neurochem. 18: 287–295.

    Article  PubMed  CAS  Google Scholar 

  • Otsuka, M., Migara, T., Konishi, S., and Takahashi, T., 1973, A study of neurotransmitters in the spinal cord, Proceedings of International Society of Neurochemistry Meeting 52-2 (Tokyo), p. 23.

    Google Scholar 

  • Palkovits, M., 1973, Isolated removal of hypothalamic or other brain nuclei of the rat, Brain Res. 59: 449–450.

    Article  PubMed  CAS  Google Scholar 

  • Palkovits, M., Brownstein, M., Saavedra, J.M., and Axelrod, J., 1974, Norepinephrine and dopamine content of hypothalamic nuclei of the rat, Brain Res. 77: 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Pataki, G., and Wang, K.-T., 1968, Quantitative thin-layer chromatography. VII. Further investigations of direct fluorometric scanning of amino acid derivatives, J. Chromatogr. 37: 499–507.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, R.P., 1972, Biochemical methods used to study single neurons of Aplysia californica (see hare), in: Methods of Neurochemistry, Vol. 2 ( R. Fried, ed.), pp. 73–99, Marcel Dekker, New York.

    Google Scholar 

  • Pigon, A., and Edström, J.E., 1959, Nucleic changes during starvation and encystment in a ciliate (Urustyla), Exp. Cell Res. 16: 648–656.

    Article  CAS  Google Scholar 

  • Poduslo, S.E., and Norton, W.T., 1972, The bulk separation of neuroglia and neuronperikarya, in: Research Methods in Neurochemistry, Vol. 1 ( N. Marks and R. Rodnight, eds.), pp. 19–93, Plenum Press, New York.

    Chapter  Google Scholar 

  • Pun, J.Y., and Lombrozo, K., 1964, Microelectrophoresis of brain and pineal protein in Polyacrylamide gel, Anal. Biochem. 9: 9–20.

    CAS  Google Scholar 

  • Quentin, C.-D., and Neuhoff, V., 1972, Micro-isoelectric focusing for the detection of LDH isoenzymes in different brain regions of rabbit, Int. J. Neurosci. 44: 17–24.

    Article  Google Scholar 

  • Ramsay, J.A., Falloon, S.W.H., and Machin, K.E., 1951, An integrating flame photometer for small quantities, J. Sci. Instrum. 28: 75–80.

    Article  Google Scholar 

  • Rentzhog, L., 1970, Double isotope derivative assay of catecholamines, Acta Pharmacol. 28 (Suppl. 1): 1–74.

    Google Scholar 

  • Riley, R.F., and Coleman, M.K., 1968, Isoelectric fractionation of proteins on a micro-scale in Polyacrylamide and agarose matrices, J. Lab. Clin. Med. 72: 714–720.

    PubMed  CAS  Google Scholar 

  • Rose, S.P.R., 1967, Preparation of enriched fractions from cerebral cortex containing isolated metabolically active neuronal and glial cells, Biochem. J. 102: 33–43.

    PubMed  CAS  Google Scholar 

  • Rosmus, J., and Deyl, Z., 1971, Chromatographic methods in the analysis of protein structure, Chromatogr. Rev. 13: 163–302.

    CAS  Google Scholar 

  • Rüchel, R., Mesecke, S., Wolfrum, D.I., and Neuhoff, V., 1973, Mikroelektrophorese an kontinuierlichen Polyacrylamid Gradienten Gelen. I. Herstellung und Eigenschaften von Gelgradienten in Kapillaren: ihre Anwendung zur Proteinfraktionierung und Molgewichts-bestimmung, Hoppe-Seyler’s Z. Physiol. Chem. 354: 1351–1368.

    Article  Google Scholar 

  • Rüchel, R., Mesecke, S., Wolfrum, D.I., and Neuhoff, V., 1974, Mikroelektrophorese an kontinuierlichen Polyacrylamid Gradienten Gelen. II. Mikroelektrophorese und elektro-phoretische Zerlegung von SDS-protein-Komplexen in Polyacrylamidgel-Komplexen in Polyacrylamidgel-Gradienten, Hoppe-Seyler’s Z. Physiol. Chem. 355: 997–1020.

    Article  Google Scholar 

  • Rude, S., Coggeshall, R.E., and van Orden, L.S., III, 1969, Chemical and ultrastructural identification of 5-hydroxy-tryptamine in an identified neuron, J. Cell Biol. 41: 832–854.

    Article  PubMed  CAS  Google Scholar 

  • Saavedra, J.M., 1974, Enzymatic-isotopic assay for the presence of ß-phenylethylamine in brain, J. Neurochem. 22: 211–216.

    Article  PubMed  CAS  Google Scholar 

  • Saavedra, J.M., and Axelrod, J., 1972, A specific and sensitive assay for tryptamine in tissues, J. Pharmacol. Exp. Ther. 182: 363–369.

    PubMed  CAS  Google Scholar 

  • Saavedra, J.M., and Axelrod, J., 1973, The demonstration and distribution of phenylethanolam- ine in the brain and other tissues, Proc. Natl. Acad. Sci. U.S.A. 70: 769–772.

    Article  PubMed  CAS  Google Scholar 

  • Saavedra, J.M., Brownstein, M., and Axelrod, J., 1973, A specific and sensitive enzymatic-isotopic microassay for serotonin in tissues, J. Pharmacol. Exp. Ther. 186: 508–515.

    PubMed  CAS  Google Scholar 

  • Saavedra, J.M., Palkovits, M., Brownstein, M.J., and Axelrod, J., 1974, Serotonin distribution in the nuclei of the rat hypotholamus and preoptic region, Brain Res. 77: 157–165.

    Article  PubMed  CAS  Google Scholar 

  • Schiefer, H.G., and Neuhoff, V., 1971, Fluorometric microdetermination of phospholipids on the cellular level, Hoppe-Seyler’s Z. Physiol. Chem. 352: 913–926.

    Article  CAS  Google Scholar 

  • Schlumpf, M., Lichtensteiger, W., Langemann, H., Waser, P.G., and Hefti, F., 1974, A fluorometric micromethod for the simultaneous determination of serotonin, noradrenaline and dopamine in milligram amounts of brain tissue, Biochem. Pharmacol. 23: 2337–2446.

    Google Scholar 

  • Segundo, J.P., 1970, Functional possibilities of nerve cells for communication and for coding, Acta Neurol. Latinoam. 14: 340–344.

    Google Scholar 

  • Seiler, N., 1970, Use of the dansyl reaction in Biochemical analysis, in: Methods in Biochemical Analysis, Vol. 18 ( D. Glick, ed.), pp. 259–337, Interscience, New York.

    Chapter  Google Scholar 

  • Seiler, N., and Knödgen, B., 1973, Quantitative mass spectrometry by internal standardisation using a single focusing mass spectrometer and the peak switching facilities of a peak matching device, Org. Mass Spectrom. 7: 97–105.

    Article  CAS  Google Scholar 

  • Seiler, N., and Knödgen, B., 1974, Identification of amino acids in picomole amounts as their 5-dibutylamino-naphthalene-1-sulphonyl derivatives, J. Chromatogr. 97: 286–288.

    Article  CAS  Google Scholar 

  • Seiler, N., and Wiechmann, M., 1970, TLC analysis of amines as their dans-derivatives, in: Progress in Thin-layer Chromatography and Related Methods, Vol. 1 ( A. Niederwieser and G. Pataki, eds.), pp. 94–144, Ann Arbor-Humphrey, Ann Arbor, Michigan.

    Google Scholar 

  • Sharman, D.F., 1971, Methods of determination of catecholamines and their metabolites, in: Methods of Neurochemistry, Vol. 1 ( R. Fried, ed.), pp. 83–128, Marcel Dekker, New York.

    Google Scholar 

  • Shellenberger, M.K., and Gordon, J.H., 1971, A rapid, simplified procedure for simultaneous assay of norepinephrine, dopamine and 5-hydroxytryptamine from discrete brain areas, Anal. Biochem. 39: 356–372.

    CAS  Google Scholar 

  • Snodgrass, S.R., and Iversen, L.L., 1973, A sensitive double isotope derivative assay to measure release of amino acids from brain in vitro, Nature (London) 241: 154–156.

    CAS  Google Scholar 

  • Snyder, S.H., and Taylor, K.M., 1972, Assay of amines and their deaminating enzymes, in: Research Methods in Neurochemistry, Vol. 1 ( N. Marks and R. Rodnight, eds.), pp. 287–316, Plenum Press, New York.

    Chapter  Google Scholar 

  • Snyder, S.H., Baldessarini, R., and Axelrod, J., 1966, A specific and sensitive enzymatic isotopic assay for tissue histamine, J. Pharmacol Exp. Ther. 153: 544–549.

    PubMed  CAS  Google Scholar 

  • Stein, S., Böhler, P., Stone, J., Dairman, W., and Undenfriend, S., 1973, Amino acid analysis with fluorescamine at the picomole level, Arch. Biochem. Biophys. 155: 203–212.

    Article  CAS  Google Scholar 

  • Strumwasser, F., 1967, Types of information stored in single neurons, in: Invertebrate Nervous Systems ( Strumwasser, F., ed.), pp. 291–319, University of Chicago Press.

    Google Scholar 

  • Svetashev, V.I., and Vaskovsky, V.E., 1972, A simplified technique for thin-layer microchro- matography of lipids, J. Chromatogr. 67: 376–378.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, K.N., and Snyder, S.H., 1972, Isotopic microassay of histamine, histidine, histidine-decarboxylase and histamine methyltransferase in brain tissue, J. Neurochem. 19: 1343–1358.

    Article  PubMed  CAS  Google Scholar 

  • Undenfriend, S., Stein, S., and Böhlen, p., 1972, A new fluorometric procedure for assay of amino acids, peptides and proteins in the picomole range, in: Chemistry and Biology of Peptides, Proceedings of the 3rd American Peptide Symposium ( J. Meienhofer, ed.), pp. 655–663, Ann Arbor Science, Ann Arbor, Michigan.

    Google Scholar 

  • Vurek, G.C., 1967, Emission photometry of picomolar amounts of calcium, magnesium and other metals, Anal. Chem. 39: 1599–1601.

    CAS  Google Scholar 

  • Vurek, G.C., and Bowman, R.L., 1965, Helium-glow photometer for picomole analysis of alkali metals, Science 149: 448–450.

    Article  PubMed  CAS  Google Scholar 

  • Weinreich, D., Weiner, C., and McCaman, R., 1975, Endogenous levels of histamine in single neurons isolated from CNS of Aplysia California, Brain Res. 84: 341–345.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, V.P., 1968, The morphology of fractions of rat fore brain synaptosomes by continuous sucrose density gradients, Biochem. J. 106: 412–417.

    PubMed  CAS  Google Scholar 

  • Whittaker, V.P., 1973, The biochemistry of synaptic transmission, Naturwissenschaften 60: 281–289.

    Article  PubMed  CAS  Google Scholar 

  • Willows, A.O.D., 1967, Behavioural acts elicited by the stimulation of single identifiable brain cells, Science 157: 570–574.

    Article  PubMed  CAS  Google Scholar 

  • Willows, A.O.D., 1968, Behavioural acts elicited by stimulation of single identifiable nerve cells, in: Physiological and Biochemical Aspects of Nervous Integration ( F.D. Carlson, ed.), pp. 217–244. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Wilson, D.L., 1971, Molecular weight distribution of proteins synthesised in single, identified neurons of Aplysia, J. Gen. Physiol. 57: 26–40.

    Article  PubMed  CAS  Google Scholar 

  • Wolfrum, D.I., Rüchel, R., Mesecke, S., and Neuhoff, V., 1974, Mikroelektrophorese in kontinuierlichen Polyacrylamid-Gradientengelen. III. Extraktion und Fraktionierung von Ribonucleinsäuren im Mikromassstab, Hoppe-Seyler’s Z. Physiol. Chem. 355: 1415–1435.

    Article  CAS  Google Scholar 

  • Wrigley, C.W., 1968, Analytical fractionation of plant and animal proteins by gel electrofocusing, J. Chromatogr. 36: 362–365.

    Article  PubMed  CAS  Google Scholar 

  • Zeuthen, E., 1961, The Cartesian diver balance, in: General Cytochemical Methods, Vol. 2 ( J. Danielli, ed.), pp. 61–90, Academic Press, New York.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Osborne, N.N. (1981). Single-Cell Isolation and Analysis. In: Lahue, R. (eds) Methods in Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3806-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3806-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3808-6

  • Online ISBN: 978-1-4684-3806-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics