Single-Cell Isolation and Analysis

  • Neville N. Osborne


The human brain has approximately 1010 nerve cells, and this vast population of neurons presents a formidable challenge to the biologist trying to understand how the nervous system works. The great structural complexity of the nervous system and the consequent difficulty in interpreting gross observations were enough to stimulate numerous early attempts to study isolated individual units. In fact, Deiters (1865), more than 100 years ago, published excellent drawings of neurons he dissected from the anterior horn of the spinal cord. It is now clear, from the mass of electrophysiological and electron-microscopic data that has accumulated, that nerve cells are independent units that are interrelated in complex ways (see, for example, Bullock, 1967; Bullock and Horridge, 1965; Eccles, 1964; Segundo, 1970; Horridge, 1968). Thus, one classic approach by the biochemist trying to elucidate the complex structure of the brain is to separate the component parts (e.g., neurons, glia, myelin, nuclei, synaptosomes, synaptic vesicles) and study them in isolation (see, for example, Rose, 1967; Whittaker, 1968, 1973; Poduslo and Norton, 1972). Studies of this kind by the biochemist have many advantages, but they can suffer from certain drawbacks such as the possibility that changes in the constituents may be caused by the elaborate separation or fractionation procedures employed. Moreover, any differences there may be in the properties of similar structures obtained from the brain cannot be observed.


Helix Pomatia Dansyl Chloride Pedal Ganglion Buccal Ganglion Giant Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, R.P., McCaman, M.W., and MaCaman, R.E., 1974, Fentamole level analysis of biogenic amines and amino acids using functional group mass spectrometry, Anal. Biochem. 51: 482–499.Google Scholar
  2. Althaus, H.H., and Neuhoff, V., 1973, One-dimensional microchromatography of phospholipids and neutral lipids on sodium silicate-impregnated silica gel layers, Hoppe-Seyler’s Z. Physiol. Chem. 354: 1073–1076.CrossRefGoogle Scholar
  3. Althaus, H.H., Osborne, N.N., and Neuhoff, V., 1973, Mikrochromatographische Extraktion und Fraktionierung von Lipiden einzelner Nervenzellen von Helixpomatia, Naturwissenschaften 60: 553–554.PubMedCrossRefGoogle Scholar
  4. Barker, D.L., Herbert, E., Hildebrand, J.G., and Kravitz, E.A., 1972, Acetylcholine and lobster sensory neurones, J. Physiol. 226: 205–209.PubMedGoogle Scholar
  5. Been, A.C., and Rasch, E.M., 1972, A vertical microsystem for discontinuous electrophoresis of insect tissue proteins using thin sheets of polyacrylamide gel, J. Histochem. Cytochem. 20: 368–384.PubMedCrossRefGoogle Scholar
  6. Bell, C.E., and Sommerville, A.R., 1966, A new fluorescence method for detection and possible quantitative assay for some catecholamine and tryptamine derivatives on paper, Biochem. J. 98: 1c–3c.PubMedGoogle Scholar
  7. Bocharova, L.S., Kostenko, M.A., Veprintov, B.N., and Allachverov, B.L., 1975, Completely isolated molluscan neurons: An ultrastructural study, Brain Res. 101: 185 — 198.CrossRefGoogle Scholar
  8. Bondareff, W., and Hyden, H., 1969, Submicroscopic structure of single neurons isolated from rabbit lateral vestibular nucleus, J. Ultrastruct. Res. 26: 399–411.PubMedCrossRefGoogle Scholar
  9. Boulton, A.A., 1968, The automated analysis of absorbent and fluorescent substances separated on paper strips, in: Methods in Biochemical Analysis, Vol. 16 ( D. Glick, ed.), pp. 327–363, Interscience, New York.CrossRefGoogle Scholar
  10. Boulton, A.A., and Majer, J.R., 1972, Detection and quantitative analysis of some noncatecholic primary aromatic amines, in: Research Methods in Neurochemistry, Vol. 1 ( N. Marks and R. Rodnight, eds.), pp. 341–356, Plenum Press, New York.CrossRefGoogle Scholar
  11. Briel, G., Neuhoff, V., and Meier, M., 1972, Microanalysis of amino acids and their determination in biogenic material using dansyl chloride, Hoppe-Seyler’s Z. Physiol. Chem. 253: 540–553.CrossRefGoogle Scholar
  12. Brown, J.P., and Perman, R.N., 1973, A highly sensitive method for amino acid analysis by a double isotope labelling technique using dansyl chloride, Eur. J. Biochem. 39: 69–75.PubMedCrossRefGoogle Scholar
  13. Brownstein, M.J., Saavedra, J.M., and Axelrod, J., 1973, Control of N-acetylserotonin by a p-adrenergic receptor, Mol. Pharmacol. 9: 605–611.Google Scholar
  14. Brownstein, M.J., Saavedra, J.M., Axelrod, J., Zeman, G.H., and Carpenter, D.O., 1974, Coexistence of several putative neurotransmitters in single identified neurons of Aplysia, Proc. Natl. Acad. Sci. U.S.A. 71: 4662–4685.PubMedCrossRefGoogle Scholar
  15. Bullock, T.H., 1967, Signals and neuronal coding, in: The Neurosciences: A Study Program ( G.C. Quarton, T. Melnechuk, and F.O. Schmitt, eds.), pp. 347–452, Rockefeller University Press, New York.Google Scholar
  16. Bullock, T.H., and Horridge, G.A., 1965, Structure and Function in the Nervous Systems of Invertebrates, W.H. Freeman, San Francisco.Google Scholar
  17. Carlsson, B., Giacobini, E., and Hovmark, S., 1967, An instrument for simultaneous determination of sodium and potassium in microsamples of biological material, Acta Physiol. Scand. 71: 379–390.Google Scholar
  18. Casola, L., and di Matteo, G., 1972, Studies on the dansylation reaction by use of 14C-dansyl chloride application to the analysis of free amino acids in rat optic nerve, Anal. Biochem. 38: 316–321.Google Scholar
  19. Catsimpoolas, N., 1968, Micro-isolectric focusing in Polyacrylamide gel columns, Anal. Biochem. 26: 480–482.Google Scholar
  20. Chen, C.F., von, Baumgarten, R., and Tandeda, K., 1971, Pacemaker properties of completely isolated neurons in Aplysia californica, Nature (London) 233: 27–29.Google Scholar
  21. Chen, C.F., von Baumgarten, R., and Harth, O., 1973, Metabolic aspects of the rythmogenisis in Aplysia pacemaker neurons, Pfluegers Arch. Gesamte Physiol. 345: 179–193.CrossRefGoogle Scholar
  22. Coggeshall, R.E., Kandel, E.R., Kupferman, I., and Waziri, R., 1966, A morphological and functional study on a cluster of identifiable neurosecretory cells in the abdominal ganglia of Aplysia californica, J. Cell Biol. 31: 363–368.PubMedCrossRefGoogle Scholar
  23. Cohen, M.J., and Jacklet, J.W., 1965, Neurons of insects: RNA changes during injury regeneration. Science 148: 1237–1239.PubMedCrossRefGoogle Scholar
  24. Cottreil, G.A., and Osborne, N.N., 1970, Subcelluar localisation of serotonin in an indendfied serotonin-containing neuron, Nature (London) 225: 470–472.CrossRefGoogle Scholar
  25. Coyle, J.T., 1975, A practical introduction to radiometric enzymatic assays in psychopharmacology, in: Handbook of Psychopharmacology, Vol. 1 ( L.L. Iversen, S.D. Iversen, and S.H. Snyder, eds.), pp. 71–100, Plenum Press, New York.Google Scholar
  26. Coyle, J.T., and Henry, D., 1973, Catecholamines in the fetal and newborn rat brain, J. Neurochem. 21: 61–68.PubMedCrossRefGoogle Scholar
  27. Cremer, T., Dames, W., and Neuhoff, V., 1972, Microdisc electrophoresis and quantitative assay of glucose-6-phosphate dehydrogenase at the cellular level, Hoppe-Seyler’s Z. Physiol. Chem. 353: 1317–1329.CrossRefGoogle Scholar
  28. Dale, G., and Latner, A., 1968, Isoelectric focusing in Polyacrylamide gels, Lancent 1: 847–848.CrossRefGoogle Scholar
  29. Dames, W., and Maurer, H.R., 1974, Simultaneous preparation for electrophoresis of a large number of micro Polyacrylamide gels with continuous concentration gradients, in: Electrophoresis and Isoelectric Focusing in Polyamide Gel (R.C. Allen and H.R. Maurer, eds.), pp. 221–231, de Gryter, Berlin and New York.Google Scholar
  30. Deiters, O., 1865, Untersuchungen über Gehirn und Rückenmark des Menschen und der Säugetiere, von M. Schulze, Braunschweig ( Brunswick ), Germany.Google Scholar
  31. Dewhurst, S.A., 1972, Choline phospokinase activities in ganglia and neurons of Aplysia, J. Neurochem. 19: 2217–2219.PubMedCrossRefGoogle Scholar
  32. Eccles, J.C., 1964, The Physiology of Synapses, Academic Press, New York.CrossRefGoogle Scholar
  33. Edström, J.E., 1956, Separation and determination of purines and pyridine nucleotides in picogram amounts, Biochim. Biophys. Acta 22: 378–388.CrossRefGoogle Scholar
  34. Edström, J.E., 1964, Microextraction and microelectrophoresis for determination and analysis of nucleic acids in isolated cellular units, in: Methods in Cell Physiology, Vol. I ( D.M. Prescott, ed.), pp. 417–447, Academic Press, New York.CrossRefGoogle Scholar
  35. Edström, J.E., and Kawiak, J., 1961, Microchemical deoxyribonucleic acid determination in individual cells, J. Biophys. Biochem. Cytol. 9: 619–616.PubMedCrossRefGoogle Scholar
  36. Edström, J.E., and Neuhoff, V., 1973, Micro-electrophoresis for RNA and DNA base analysis, in: Micromethods in Molecular Biology ( V. Neuhoff, ed.), pp. 215––256. Springer-Verlag, Berlin.Google Scholar
  37. Folch, J., Lees, M., and Sloane-Stanley, G.H., 1957, A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem. 226: 497–509.PubMedGoogle Scholar
  38. Frazier, W.T., Kandel, E.R., Kupferman, I., Waziri, R., and Coggeshall, R.E., 1957, Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia californica, J. Neurophysiol. 30: 1287–1351.Google Scholar
  39. Gainer, H., 1971, Microdisc electrophoresis in sodium dodecyl sulphate: An application to the study of protein synthesis in individual, identified neurons, Anal. Biochem. 44: 589–605.Google Scholar
  40. Gainer, H., 1972, Patterns of protein synthesis in individual, identified molluscan neurons, Brain Res. 39: 369–385.PubMedCrossRefGoogle Scholar
  41. Gainer, H., 1973, Isoelectric focusing of proteins at the 10-10 and 10-9g level, Anal. Biochem. 51: 646–650.Google Scholar
  42. Giacobini, E., 1956, Histochemical demonstration of AChE activity in isolated nerve cells, Acta Physiol Scand. 36: 276–290.PubMedCrossRefGoogle Scholar
  43. Giacobini, E., 1959, The distribution and localisation of cholinesterase in nerve cells, Acta Physiol. Scand. Suppl. 156: 1–54.Google Scholar
  44. Giacobini, E., 1964, in: Morphological and Biochemical Correlates of Neural Activity (M.M. Cohen and R.S. Snider, eds.), pp. 15–31, Harper and Row, New York.Google Scholar
  45. Giacobini, E., 1968, Chemical studies on Individual Neurons: Part I, in: Neurosciences Research, Vol. 1 ( S. Ehrenpreis and O.C. Solnitzky, eds.), pp. 1–66, Academic Press, New York.Google Scholar
  46. Giacobini, E., 1969, Chemical studies on individual neurons: Part II, in: Neurosciences Research, Vol. 2 ( S. Ehrenpreis and O.C. Solnitzky, eds.), pp. 112–198, Academic Press, New York.Google Scholar
  47. Giacobini, E., 1970, Biochemistry of single neuronal models, in: Biochemical Psychopharmacology, Vol. 2 ( E. Costa and E. Giacobini, eds.), pp. 9–64. Raven Press, New York.Google Scholar
  48. Giacobini, E., 1975, The use of microchemical techniques for the identification of new transmitter molecules in neurons, J. Neurosci. Res. 1: 1–18.PubMedCrossRefGoogle Scholar
  49. Giller, E., and Schwartz, J.H., 1971, Choline acetyltransferase in identified neurons of the abdominal ganglion of Aplysia californica, J. Neurophysiol. 34: 108–115.PubMedGoogle Scholar
  50. Gray, W.R., 1972, End-group analysis using dansyl chloride, Methods Enzymol. 25: 121–138.PubMedCrossRefGoogle Scholar
  51. Grossbach, U., 1965, Acrylamide gel electrophoresis in capillary columns, Biochim. Biophys. Acta 107: 180–182.CrossRefGoogle Scholar
  52. Grossbach, U., 1971, Chromosomen-Struktur und Zell-Funktion, Mitt. Max-Planck-Ges. 2: 93–108.Google Scholar
  53. Haljamäe, H., and Larsson, S., 1968, An ultramicroflame photometer for K and Na analysis of single cells and nanoliter quantities of biological fluids, Chem. Instrum. 1: 131–144.CrossRefGoogle Scholar
  54. Haljamäe, H., and Waldman, A.A., 1972, Flame photometry at the cell level, in: Techniques of Biochemical and Biophysical Morphology, Vol. 1 ( D. Glick and R.M. Rosenbaum, eds.), pp. 233–268. John Wiley, New York.Google Scholar
  55. Hazama, H., and Uchimura, H., 1972, Separation of lactate dehydrogenase isoenzymes of nerve cells in the central nervous system by micro-disc electrophoresis on Polyacrylamide gels, Biochim. Biophys. Acta 200: 414–417.Google Scholar
  56. Heyneman, R.A., Bernard, D.M., and Vercauteren, R.E., 1972, Direct fluorometric microdeter- mination of phospholipids on thin-layer chromatograms, J. Chromatogr. 68: 285–288.PubMedCrossRefGoogle Scholar
  57. Hezel, U., 1973, Direkte quantitative Photometrie and Dünnschicht-Chromatogrammen, Angew. Chem. 85: 334–342.Google Scholar
  58. Hildebrand, J.G., Barker, D.L., Herbert, E., and Kravitz, E.A., 1971, Screening for neurotransmitters: A rapid radiochemical procedure, J. Neurobiol. 2: 231–246.PubMedCrossRefGoogle Scholar
  59. Hillman, H., and Hyden, H., 1965, Membrane potentials in isolated neurones in vitro from Deiters’ nucleus of rabbit, J. Physiol. 177: 398–410.PubMedGoogle Scholar
  60. Holter, H., 1961, The Cartesian diver, in: General Cytochemical Methods, Vol. 2 ( J. Danieli ed.), pp. 93–128. Academic Press, New York.CrossRefGoogle Scholar
  61. Horridge, G.A., 1968, Interneurons, W.H. Freeman, San Francisco.Google Scholar
  62. Hubmann, F.-H., 1973, Two-step, two-dimensional development thin-layer chromatography of lipids on a microscale, J. Chromatogr. 86: 197–199.PubMedCrossRefGoogle Scholar
  63. Hydèn, H., 1959, Quantitative assay of compounds in isolated, fresh nerve cells and glial cells from control and stimulated animals, Nature (London) 184: 433–435.CrossRefGoogle Scholar
  64. Hydèn, H., 1960, The neuron, in: The Cell, Vol. IX ( J. Brächet and A. Mirsky, eds.), pp. 215–323. Academic Press, New York.Google Scholar
  65. Hydèn, H., 1964, Biochemical and functional interplay between neuron and glia, in: Recent Advances in Biological Psychiatry, Vol. VI ( J. Wortis, ed.), pp. 31–52, Plenum Press, New York.Google Scholar
  66. Hydèn, H., 1972, Macromolecules and behavior, in: Arthur Thomson Lectures ( G.B. Ansell and P.B. Bradley eds.), pp. 3–75, Macmillan, London.Google Scholar
  67. Hydèn, H., and Pigon, A., 1960, A cytophysiological study of the functional relationship between oligodendroglial cells and nerve cells of Deiters’ nucleus, J. Neurochem. 6: 57–72.PubMedCrossRefGoogle Scholar
  68. Hydèn, H., and Rönnbäch, L., 1975, Membrane-bound S-100 protein on nerve cells and its distribution, Brain Res. 100: 615–628.PubMedCrossRefGoogle Scholar
  69. Hydèn, H., Bjurstam, K., and McEwen, B., 1966, Protein at the cellular level by microdisc electrophoresis, Anal. Biochem. 17: 1–15.Google Scholar
  70. Jacobowitz, D.M., 1974, Removal of discrete fresh regions of the rat brain, Brain Res. 80: 111–115.PubMedCrossRefGoogle Scholar
  71. Johnston, P.V., and Roots, B.I., 1972, Nerve Membranes, Vol. 36, Pergamon Press, Oxford and New York.Google Scholar
  72. Joseph, M.H., and Halliday, J., 1975, A dansylation microassay for some amino acids in brain, Anal. Biochem. 64: 389–402.Google Scholar
  73. Jovin, T.M., Dante, L.M., and Chrambach, A., 1970, Multiphorese buffer systems output, Publ. Nos. 196085–196091 and 203016, National Information Service, Springfield, Virginia.Google Scholar
  74. Kandel, E.R., Frazier, W.T., Waziri, R., and Coggeshall, R.E., 1957, Direct and common connections among identified neurons in Aplysia, J. Neurophysiol. 30: 1352–1376.Google Scholar
  75. Katz, G.M., 1968, Another look at ultramicro integrative flame photometry, Anal. Biochem. 26: 381–397.Google Scholar
  76. Kerkut, O.A., 1969, Neurochemistry of invertebrates, in: Handbook of Neurochemistry, Vol. II ( A. Lajthe, ed.), pp. 539–562, Plenum Press, New York.Google Scholar
  77. Kerkut, O.A., Lambert, J.D.C., Gayton, R.J., Loker, J.E., and Walker, R.J., 1975, Mapping of nerve cells in the suboesophageal ganglia of Helix espera, Comp. Biochem. Physiol. 50A: 1–25.CrossRefGoogle Scholar
  78. Keleti, G., and Lederer, W.H., 1974, Micromethods for the Biological Sciences, Van Nostrand Reinhold, New York.Google Scholar
  79. Kleinig, H., and Lempert, U., 1970, Phospholipid analysis on a micro scale, J. Chromatogr. 53: 595–597.CrossRefGoogle Scholar
  80. Koenig, E., and Brattgård, S.O., 1963, A quantitative micromethod for determination of specific radioactivity of 3H-purines and 3H-pyrimidines, Anal. Biochem. 6: 424–434.Google Scholar
  81. Kostenko, M.A., 1972, The isolation of single nerve cells of the brain of the mollusc Lymnaea stagnalis for their further cultivation in vitro, Tsitologia 14: 1274–1279 (in Russian).Google Scholar
  82. Kostenko, M.A., Geletyuk, V.I., and Veprintsev, B.N., 1974, Completely isolated neurons in the mollusc Lymnaea stagnalis: A new objective for nerve cell biology investigation, Comp. Biochem. Physiol. 49A: 89–100.CrossRefGoogle Scholar
  83. Kronberg H., Zimmer H.-G., and Neuhoff, V., 1978, Automatische Fluorimetrik von Mikro-Dünnschicht-Chromatogrammen, Z. Anal. Chem. 290: 2145–2150.Google Scholar
  84. Lam, D.M.K., Wiesel, T.N., and Kaneko, A., 1974, Neurotransmitter synthesis in cephalopod retina, Brain Res. 82: 365–368.PubMedCrossRefGoogle Scholar
  85. Laverty, R., and Sharman, D.F., 1965, The estimation of small quantities of 3,4-dihydroxyphen-ylethylamine in tissues, Br. J. Pharmacol. 24: 538–548.Google Scholar
  86. Leonard, B.E., and Osborne, N.N., 1974, The use of dansyl-chloride for the detection of amino acids and serotonin in nervous tissue, in: Research Methods in Neurochemistry, Vol. 3 ( N. Marks and R. Rodnight, eds.), pp. 443–462, Plenum Press, New York.Google Scholar
  87. Linderström-Lang, K., 1973, Principle of Cartesian diver applied to gasometric technique, Nature (London) 140: 108.CrossRefGoogle Scholar
  88. Lowry, O.H., 1952, The quantitative histochemistry of the brain, Science 116: 526.Google Scholar
  89. Lowry, O.H., 1953, The quantitative histochemistry of the brain, J. Histochem. Cytochem. 1: 420–428.PubMedCrossRefGoogle Scholar
  90. Lowry, O.H., 1963, The chemical study of single neurons, Harvey Lect. 58: 1–19.PubMedGoogle Scholar
  91. Lowry, O.H., and Passonneau, J.V., 1972, A Flexible System of Enzymatic Analysis, Academic Press, New York.Google Scholar
  92. Maickel, R.P., and Miller, F.P., 1966, Fluorescent products formed by reaction of indole derivatives with o-phthaldehyde, Anal. Chem. 38: 1937–1938.Google Scholar
  93. Malnic, G., Klose, R.M., and Giebisch, G., 1964, Micropuncture study of renal potassium excretion in the rat, Am. J. Physiol. 206: 674–686.PubMedGoogle Scholar
  94. Maurer, H.R., and Dati, F.A., 1972, Polyacrylamide gel electrophoresis on microslabs, Anal. Biochem. 46: 19–32.Google Scholar
  95. McCaman, R.E., 1968, Application of tracers to quantitative biochemical and cytochemical studies, in: Advances in Tracer Methodology, Vol. 4 ( S. Rothchild, ed.), pp. 137–202, Plenum Press, New York.Google Scholar
  96. McCaman, R.E., 1971, Quantitative isotopic methods for measuring enzyme activities and endogenous substrate levels, in: International Encyclopedia of Pharmacology and Therapeutics, Sect. 78, pp. 275–314, Pergamon Press, New York.Google Scholar
  97. McCaman, R.E., and Dewhurst, S.A., 1970, Choline acetyltransferase in individual neurons of Aplysia californica, J. Neurochem. 17: 1421–1426.PubMedCrossRefGoogle Scholar
  98. MacCaman, R.E., and Dewhurst, S.A., 1971, Metabolism of putative transmitters in individual neurons of Aplysia calif ornica, J. Neurochem. 18: 1329–1335.CrossRefGoogle Scholar
  99. McCaman, M.W., Weinreich, D., and McCaman, R.E., 1973, The determination of picomole levels of 5-hydroxytryptamine and dopamine in Aplysia, Tritonia and leech nervous tissues, Brain Res. 53: 129–137.PubMedCrossRefGoogle Scholar
  100. Milinoff, P.C., Landsberg, L., and Axelrod, J., 1969, An enzymatic assay for octopamine and other β-hydroxylated phenylethylamines, J. Pharmacol. Exp. Ther. 170: 253–261.Google Scholar
  101. Mtiller, P., 1958, Experiments on current flow and ionic movements in single myelinated nerve fibres, Exp. Cell Res. Suppl. 5: 118–152.Google Scholar
  102. Nagatsu, T., 1973, Biochemistry of Catecholamines, University Park Press, Baltimore, London, and Tokyo.Google Scholar
  103. Neadle, D.J., and Pollitt, R.J., 1965, The formation of l-dimethylaminonaphthalene-5-sulphon-amide during the preparation of l-dimethylaminonaphthalene-5-sulphonylamino acids, Biochem. J. 97: 607–608.PubMedGoogle Scholar
  104. Neuhoff, V., 1968, Micro-disc-electrophorese von Hirnproteinen, Arzneim.-Forsch. 18: 35–38.Google Scholar
  105. Neuhoff, V (ed.), 1973, Micromethods in Molecular Biology, Springer-Verlag, Berlin.Google Scholar
  106. Niederwieser, A., 1972, Thin layer chromatography of amino acids and derivatives, Methods Enzymol. 25: 60–99.PubMedCrossRefGoogle Scholar
  107. Nicholls, J.G., and Baylor, D.A., 1969, The specificity and functional role of individual cells in a simple central nervous system, Endeavor 29: 3–7.Google Scholar
  108. Osborne, N.N., 1971, A micro-chromatographic method for the detection of biologically active monoamines from isolated neurons, Experientia 25: 1502–1513.CrossRefGoogle Scholar
  109. Osborne, N.N., 1973, The analysis of amines and amino acids in microquantities of tissue, in: Progress in Neurobiology, Vol. 1, Part 4 ( G.A. Kerkut and J.W. Phillis, eds.), pp. 299–329, Pergamon Press, Oxford.Google Scholar
  110. Osborne, N.N., 1974, Microchemical Analysis of Nervous Tissue, Pergamon Press, Oxford and New York.Google Scholar
  111. Osborne, N.N., and Neuhoff, V., 1973, Neurochemical studies on characterised neurons, Naturwissenschaften 60: 78–87.PubMedCrossRefGoogle Scholar
  112. Osborne, N.N., Szczepaniak, A.C., and Nenhoff, V., Amines and amino acids in identified neurons of Helixpomatia, Int. J. Neurosci. 5: 125–131.Google Scholar
  113. Osborne, N.N., and Pentreath, V.W., 1976, Effects of 5,7-dihydroxytryptamine on an identified 5-hydroxytryptamine-containing neurone in the central nervous system of the snail Helix pomatia, Br. J. Pharmacol. 56: 29–38.PubMedCrossRefGoogle Scholar
  114. Osborne, N.N., and Riichel, R., 1975, Fractionation of proteins from single neurons of Planorbis corneus by microelectrophoresis on SDS-gradient polyacrylamide gels, J. Chromatogr. 105: 197–200.PubMedCrossRefGoogle Scholar
  115. Osborne, N.N., Priggemeier, E., and Neuhoff, V., 1975, Dopamine metabolism in characterised neurons of Planorbis corneus, Brain Res. 90: 261–271.PubMedCrossRefGoogle Scholar
  116. Osborne, N.N., Stahl, W.L., and Neuhoff, V., 1976, Separation of amino acids as mansyl derivatives on poly amide layers J. Chromatogr. 123: 212–215.PubMedCrossRefGoogle Scholar
  117. Otsuka, M., Obata, K., Migata, Y., and Tanaka, T., 1971, Measurement of γ-aminobutyric acid in isolated nerve cells of cat central neurons, J. Neurochem. 18: 287–295.PubMedCrossRefGoogle Scholar
  118. Otsuka, M., Migara, T., Konishi, S., and Takahashi, T., 1973, A study of neurotransmitters in the spinal cord, Proceedings of International Society of Neurochemistry Meeting 52-2 (Tokyo), p. 23.Google Scholar
  119. Palkovits, M., 1973, Isolated removal of hypothalamic or other brain nuclei of the rat, Brain Res. 59: 449–450.PubMedCrossRefGoogle Scholar
  120. Palkovits, M., Brownstein, M., Saavedra, J.M., and Axelrod, J., 1974, Norepinephrine and dopamine content of hypothalamic nuclei of the rat, Brain Res. 77: 137–149.PubMedCrossRefGoogle Scholar
  121. Pataki, G., and Wang, K.-T., 1968, Quantitative thin-layer chromatography. VII. Further investigations of direct fluorometric scanning of amino acid derivatives, J. Chromatogr. 37: 499–507.PubMedCrossRefGoogle Scholar
  122. Peterson, R.P., 1972, Biochemical methods used to study single neurons of Aplysia californica (see hare), in: Methods of Neurochemistry, Vol. 2 ( R. Fried, ed.), pp. 73–99, Marcel Dekker, New York.Google Scholar
  123. Pigon, A., and Edström, J.E., 1959, Nucleic changes during starvation and encystment in a ciliate (Urustyla), Exp. Cell Res. 16: 648–656.CrossRefGoogle Scholar
  124. Poduslo, S.E., and Norton, W.T., 1972, The bulk separation of neuroglia and neuronperikarya, in: Research Methods in Neurochemistry, Vol. 1 ( N. Marks and R. Rodnight, eds.), pp. 19–93, Plenum Press, New York.CrossRefGoogle Scholar
  125. Pun, J.Y., and Lombrozo, K., 1964, Microelectrophoresis of brain and pineal protein in Polyacrylamide gel, Anal. Biochem. 9: 9–20.Google Scholar
  126. Quentin, C.-D., and Neuhoff, V., 1972, Micro-isoelectric focusing for the detection of LDH isoenzymes in different brain regions of rabbit, Int. J. Neurosci. 44: 17–24.CrossRefGoogle Scholar
  127. Ramsay, J.A., Falloon, S.W.H., and Machin, K.E., 1951, An integrating flame photometer for small quantities, J. Sci. Instrum. 28: 75–80.CrossRefGoogle Scholar
  128. Rentzhog, L., 1970, Double isotope derivative assay of catecholamines, Acta Pharmacol. 28 (Suppl. 1): 1–74.Google Scholar
  129. Riley, R.F., and Coleman, M.K., 1968, Isoelectric fractionation of proteins on a micro-scale in Polyacrylamide and agarose matrices, J. Lab. Clin. Med. 72: 714–720.PubMedGoogle Scholar
  130. Rose, S.P.R., 1967, Preparation of enriched fractions from cerebral cortex containing isolated metabolically active neuronal and glial cells, Biochem. J. 102: 33–43.PubMedGoogle Scholar
  131. Rosmus, J., and Deyl, Z., 1971, Chromatographic methods in the analysis of protein structure, Chromatogr. Rev. 13: 163–302.Google Scholar
  132. Rüchel, R., Mesecke, S., Wolfrum, D.I., and Neuhoff, V., 1973, Mikroelektrophorese an kontinuierlichen Polyacrylamid Gradienten Gelen. I. Herstellung und Eigenschaften von Gelgradienten in Kapillaren: ihre Anwendung zur Proteinfraktionierung und Molgewichts-bestimmung, Hoppe-Seyler’s Z. Physiol. Chem. 354: 1351–1368.CrossRefGoogle Scholar
  133. Rüchel, R., Mesecke, S., Wolfrum, D.I., and Neuhoff, V., 1974, Mikroelektrophorese an kontinuierlichen Polyacrylamid Gradienten Gelen. II. Mikroelektrophorese und elektro-phoretische Zerlegung von SDS-protein-Komplexen in Polyacrylamidgel-Komplexen in Polyacrylamidgel-Gradienten, Hoppe-Seyler’s Z. Physiol. Chem. 355: 997–1020.CrossRefGoogle Scholar
  134. Rude, S., Coggeshall, R.E., and van Orden, L.S., III, 1969, Chemical and ultrastructural identification of 5-hydroxy-tryptamine in an identified neuron, J. Cell Biol. 41: 832–854.PubMedCrossRefGoogle Scholar
  135. Saavedra, J.M., 1974, Enzymatic-isotopic assay for the presence of ß-phenylethylamine in brain, J. Neurochem. 22: 211–216.PubMedCrossRefGoogle Scholar
  136. Saavedra, J.M., and Axelrod, J., 1972, A specific and sensitive assay for tryptamine in tissues, J. Pharmacol. Exp. Ther. 182: 363–369.PubMedGoogle Scholar
  137. Saavedra, J.M., and Axelrod, J., 1973, The demonstration and distribution of phenylethanolam- ine in the brain and other tissues, Proc. Natl. Acad. Sci. U.S.A. 70: 769–772.PubMedCrossRefGoogle Scholar
  138. Saavedra, J.M., Brownstein, M., and Axelrod, J., 1973, A specific and sensitive enzymatic-isotopic microassay for serotonin in tissues, J. Pharmacol. Exp. Ther. 186: 508–515.PubMedGoogle Scholar
  139. Saavedra, J.M., Palkovits, M., Brownstein, M.J., and Axelrod, J., 1974, Serotonin distribution in the nuclei of the rat hypotholamus and preoptic region, Brain Res. 77: 157–165.PubMedCrossRefGoogle Scholar
  140. Schiefer, H.G., and Neuhoff, V., 1971, Fluorometric microdetermination of phospholipids on the cellular level, Hoppe-Seyler’s Z. Physiol. Chem. 352: 913–926.CrossRefGoogle Scholar
  141. Schlumpf, M., Lichtensteiger, W., Langemann, H., Waser, P.G., and Hefti, F., 1974, A fluorometric micromethod for the simultaneous determination of serotonin, noradrenaline and dopamine in milligram amounts of brain tissue, Biochem. Pharmacol. 23: 2337–2446.Google Scholar
  142. Segundo, J.P., 1970, Functional possibilities of nerve cells for communication and for coding, Acta Neurol. Latinoam. 14: 340–344.Google Scholar
  143. Seiler, N., 1970, Use of the dansyl reaction in Biochemical analysis, in: Methods in Biochemical Analysis, Vol. 18 ( D. Glick, ed.), pp. 259–337, Interscience, New York.CrossRefGoogle Scholar
  144. Seiler, N., and Knödgen, B., 1973, Quantitative mass spectrometry by internal standardisation using a single focusing mass spectrometer and the peak switching facilities of a peak matching device, Org. Mass Spectrom. 7: 97–105.CrossRefGoogle Scholar
  145. Seiler, N., and Knödgen, B., 1974, Identification of amino acids in picomole amounts as their 5-dibutylamino-naphthalene-1-sulphonyl derivatives, J. Chromatogr. 97: 286–288.CrossRefGoogle Scholar
  146. Seiler, N., and Wiechmann, M., 1970, TLC analysis of amines as their dans-derivatives, in: Progress in Thin-layer Chromatography and Related Methods, Vol. 1 ( A. Niederwieser and G. Pataki, eds.), pp. 94–144, Ann Arbor-Humphrey, Ann Arbor, Michigan.Google Scholar
  147. Sharman, D.F., 1971, Methods of determination of catecholamines and their metabolites, in: Methods of Neurochemistry, Vol. 1 ( R. Fried, ed.), pp. 83–128, Marcel Dekker, New York.Google Scholar
  148. Shellenberger, M.K., and Gordon, J.H., 1971, A rapid, simplified procedure for simultaneous assay of norepinephrine, dopamine and 5-hydroxytryptamine from discrete brain areas, Anal. Biochem. 39: 356–372.Google Scholar
  149. Snodgrass, S.R., and Iversen, L.L., 1973, A sensitive double isotope derivative assay to measure release of amino acids from brain in vitro, Nature (London) 241: 154–156.Google Scholar
  150. Snyder, S.H., and Taylor, K.M., 1972, Assay of amines and their deaminating enzymes, in: Research Methods in Neurochemistry, Vol. 1 ( N. Marks and R. Rodnight, eds.), pp. 287–316, Plenum Press, New York.CrossRefGoogle Scholar
  151. Snyder, S.H., Baldessarini, R., and Axelrod, J., 1966, A specific and sensitive enzymatic isotopic assay for tissue histamine, J. Pharmacol Exp. Ther. 153: 544–549.PubMedGoogle Scholar
  152. Stein, S., Böhler, P., Stone, J., Dairman, W., and Undenfriend, S., 1973, Amino acid analysis with fluorescamine at the picomole level, Arch. Biochem. Biophys. 155: 203–212.CrossRefGoogle Scholar
  153. Strumwasser, F., 1967, Types of information stored in single neurons, in: Invertebrate Nervous Systems ( Strumwasser, F., ed.), pp. 291–319, University of Chicago Press.Google Scholar
  154. Svetashev, V.I., and Vaskovsky, V.E., 1972, A simplified technique for thin-layer microchro- matography of lipids, J. Chromatogr. 67: 376–378.PubMedCrossRefGoogle Scholar
  155. Taylor, K.N., and Snyder, S.H., 1972, Isotopic microassay of histamine, histidine, histidine-decarboxylase and histamine methyltransferase in brain tissue, J. Neurochem. 19: 1343–1358.PubMedCrossRefGoogle Scholar
  156. Undenfriend, S., Stein, S., and Böhlen, p., 1972, A new fluorometric procedure for assay of amino acids, peptides and proteins in the picomole range, in: Chemistry and Biology of Peptides, Proceedings of the 3rd American Peptide Symposium ( J. Meienhofer, ed.), pp. 655–663, Ann Arbor Science, Ann Arbor, Michigan.Google Scholar
  157. Vurek, G.C., 1967, Emission photometry of picomolar amounts of calcium, magnesium and other metals, Anal. Chem. 39: 1599–1601.Google Scholar
  158. Vurek, G.C., and Bowman, R.L., 1965, Helium-glow photometer for picomole analysis of alkali metals, Science 149: 448–450.PubMedCrossRefGoogle Scholar
  159. Weinreich, D., Weiner, C., and McCaman, R., 1975, Endogenous levels of histamine in single neurons isolated from CNS of Aplysia California, Brain Res. 84: 341–345.PubMedCrossRefGoogle Scholar
  160. Whittaker, V.P., 1968, The morphology of fractions of rat fore brain synaptosomes by continuous sucrose density gradients, Biochem. J. 106: 412–417.PubMedGoogle Scholar
  161. Whittaker, V.P., 1973, The biochemistry of synaptic transmission, Naturwissenschaften 60: 281–289.PubMedCrossRefGoogle Scholar
  162. Willows, A.O.D., 1967, Behavioural acts elicited by the stimulation of single identifiable brain cells, Science 157: 570–574.PubMedCrossRefGoogle Scholar
  163. Willows, A.O.D., 1968, Behavioural acts elicited by stimulation of single identifiable nerve cells, in: Physiological and Biochemical Aspects of Nervous Integration ( F.D. Carlson, ed.), pp. 217–244. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  164. Wilson, D.L., 1971, Molecular weight distribution of proteins synthesised in single, identified neurons of Aplysia, J. Gen. Physiol. 57: 26–40.PubMedCrossRefGoogle Scholar
  165. Wolfrum, D.I., Rüchel, R., Mesecke, S., and Neuhoff, V., 1974, Mikroelektrophorese in kontinuierlichen Polyacrylamid-Gradientengelen. III. Extraktion und Fraktionierung von Ribonucleinsäuren im Mikromassstab, Hoppe-Seyler’s Z. Physiol. Chem. 355: 1415–1435.CrossRefGoogle Scholar
  166. Wrigley, C.W., 1968, Analytical fractionation of plant and animal proteins by gel electrofocusing, J. Chromatogr. 36: 362–365.PubMedCrossRefGoogle Scholar
  167. Zeuthen, E., 1961, The Cartesian diver balance, in: General Cytochemical Methods, Vol. 2 ( J. Danielli, ed.), pp. 61–90, Academic Press, New York.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Neville N. Osborne
    • 1
  1. 1.Nuffield Laboratory of OphthalmologyUniversity of OxfordOxfordEngland

Personalised recommendations