Advertisement

The Squid Giant Axon: Methods and Applications

  • Philip Rosenberg

Abstract

The unique properties of the squid giant axon cannot be ignored by any neurobiologist with a serious interest in understanding axonal function. The neurochemists and neuropharmacologists are now following the lead of the electrophysiologists in applying their ingenuity to exploiting the natural advantages to be gained by using the largest single nerve fiber that nature has created.

Keywords

Schwann Cell Snake Venom Giant Axon Squid Giant Axon Nerve Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, N.J., Deguchi, T., Frazier, D.T., Murayama, K., Narahashi, T., Ottolenghi, A., and Wang, C.M., 1972, The action of phospholipases on the inner and outer surface of the squid giant axon membrane, J. Physiol 220: 73.PubMedGoogle Scholar
  2. Adam, G., 1973, The effect of potassium diffusion through the Schwann cell layer on potassium conductance of the squid axon, J. Membrane Biol. 13: 353.Google Scholar
  3. Adelman, W.J., 1965, Cardiac like responses from internally perfused squid axons, Excerpta Medica International Congr. Ser., No. 87, Proceedings of the XXIIIrd International Congress of Physiological Sciences ( Tokyo, Sept. 1965 ), p. 542.Google Scholar
  4. Adelman, W.J., and Fitzhugh, R., 1975, Solutions of the Hodgkin-Huxley equations modified for potassium accumulation in a periaxonal space, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34: 1322.Google Scholar
  5. Adelman, W.J., and Fok, Y.B., 1964, Internally perfused squid axons studied under voltage clamp conditions. II. Results: The effects of internal potassium and sodium on membrane electrical characteristics, J. Cell. Comp. Physiol. 64: 429.Google Scholar
  6. Adelman, W.J., and Gilbert, D.L., 1964, Internally perfused squid axons studied under voltage clamp conditions. I. Method, J. Cell. Comp. Physiol. 64: 423.Google Scholar
  7. Adelman, W.J., and Moore, J.W., 1961, Action of external divalent ion reduction on sodium movement in the squid giant axon, J. Gen. Physiol. 45: 93.PubMedGoogle Scholar
  8. Adelman, W.J., and Senft, J.P., 1966, Voltage clamp studies on the effect of internal cesium ion on sodium and potassium currents in the squid giant axon, J. Gen. Physiol 50: 279.PubMedGoogle Scholar
  9. Adelman, W.J., and Senft, J.P., 1968, Dynamic assymetries in the squid axon membrane, J. Gen. Physiol. 51: 102S.PubMedGoogle Scholar
  10. Adelman, W.J., and Taylor, R.E., 1961, Leakage current rectification in the squid giant axon, Nature (London) 190: 883.Google Scholar
  11. Adelman, W.J., and Taylor, R.E., 1964, Effects of replacement of external sodium chloride with sucrose on membrane currents of the squid giant axon, Biophys. J. 4: 451.PubMedGoogle Scholar
  12. Adelman, W.J., Dyro, F.M., and Senft, J., 1965a, Long duration responses obtained from internally perfused axons, J. Gen. Physiol. 48: 1.PubMedGoogle Scholar
  13. Adelman, W.J., Dyro, F.M., and Senft, J.P., 1965b, Internally perfused axons: Effects of two different anions on ionic conductance, Science 151: 1392.Google Scholar
  14. Agin, D., and Schauf, C., 1968, Concerning negative conductance in the squid axon, Proc. Natl Acad. Sci U.S.A. 59: 1201.Google Scholar
  15. Aidley, D.J., 1971, The Physiology of Excitable Cells, Cambridge University Press, London.Google Scholar
  16. Albuquerque, E.X., Seyama, I., and Narahashi, T., 1973, Characterization of batrachotoxin- induced depolarizations of the squid giant axons, J. Pharmacol. Exp. Ther. 184: 308.PubMedGoogle Scholar
  17. Alema, S., and Giuditta, A., 1976, Site of biosynthesis of brain-specific proteins in the giant fibre system of the squid, J. Neurochem. 26: 995.PubMedGoogle Scholar
  18. Alema, S., Calissano, P., Rusca, G., and Giuditta, A., 1973, Identification of a calcium-binding brain specific protein in the axoplasm of squid giant axons, J. Neurochem. 20: 681.PubMedGoogle Scholar
  19. Alfred, R.G., 1974, Structure, growth and distribution of the squid Bathothauma lyromma, Chun., J. Mar. Biol Assoc. U.K. 51: 995.Google Scholar
  20. Araya, H., and Ishii, M., 1974, Information on the fishery and the ecology of the squid, Doryteuthis bleekeri Keferstein, in the waters of Hokkaido, Bull. Hokkaido Reg. Fish Res. Lab. 40: 1.Google Scholar
  21. Armstrong, C.M., 1966, Time course of TEA+-induced anomalous rectification in squid giant axons, J. Gen. Physiol. 50: 491.PubMedGoogle Scholar
  22. Armstrong, C.M., 1969, Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons, J. Gen. Physiol. 54: 553.PubMedGoogle Scholar
  23. Armstrong, C.M., 1971, Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons, J. Gen. Physiol. 58: 413.PubMedGoogle Scholar
  24. Armstrong, C.M., and Bezanilla, F., 1973, Currents related to the movement of the gating particles of the sodium channels, Nature (London) 242: 459.Google Scholar
  25. Armstrong, C.M., and Bezanilla, F., 1974, Change movement associated with the opening and closing of the activation gates of the Na channels, J. Gen. Physiol. 63: 533.PubMedGoogle Scholar
  26. Armstrong, C.M., and Bezanilla, F., 1975, Currents associated with the ionic gating structures in nerve membrane, in: Carriers and channels in biological systems (A.E. Shamoo, ed.), Ann. N.Y. Acad. Sci. 264: 265.Google Scholar
  27. Armstrong, C.M., and Binstock, L., 1964, The effects of several alcohols on the properties of the squid giant axon, J. Gen. Physiol. 48: 265.PubMedGoogle Scholar
  28. Armstrong, C.M., and Binstock, L., 1965, Anomalous rectification in the squid axon injected with tetraethylammonium chloride, J. Gen. Physiol. 48: 859.PubMedGoogle Scholar
  29. Armstrong, C.M., and Hille, B., 1972, The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier, J. Gen. Physiol. 59: 388.PubMedGoogle Scholar
  30. Armstrong, C.M., Bezanilla, F., and Rojas, E., 1973, Destruction of sodium conductance inactivation in squid axons perfused with pronase, J. Gen. Physiol. 62: 375.PubMedGoogle Scholar
  31. Arnold, J.M., 1965, Normal embryonic stages of the squid, Loligo pealii (Lesuer), Biol. Bull. 128: 24.Google Scholar
  32. Arnold, J.M., Singley, C.T., and Williams-Arnold, L.D., 1972, Embryonic development and post- hatching survival of the sepiolid squid Euprymma scolopes under laboratory conditions, Veliger 14: 361.Google Scholar
  33. Arnold, J.M., Summers, W.C., Gilbert, D.L., Manalis, R.S., Daw, N.W., and Lasek, R.J., 1974, A guide to the laboratory use of the squid Loligo pealei, Marine Biological Laboratory, Woods Hole, Massachusetts.Google Scholar
  34. Atwater, I., Bezanilla, F., and Rojas, E., 1970, Time course of the sodium permeability change during a single membrane action potential, J. Physiol 211: 753.PubMedGoogle Scholar
  35. Baker, P.F., 1968, Recent experiments on the properties of the Na efflux from squid axons, J. Gen. Physiol 51: 172S.PubMedGoogle Scholar
  36. Baker, P.F., and Crawford, A.C., 1972, Mobility and transport of magnesium in squid giant axons, J. Physiol 227: 855.PubMedGoogle Scholar
  37. Baker, P.F., and Glitsch, H.G., 1975, Voltage-dependent changes in the permeability of nerve membranes to calcium and other divalent cations, Philos. Trans. R. Soc. London B Ser. 270: 389.Google Scholar
  38. Baker, P.F., and Manii, J., 1968, The rates of action of K+ and ouabain on the sodium pump in squid axons, Biochim. Biophys. Acta 150: 328.Google Scholar
  39. Baker, P.F., and Potashner, S.J., 1913, The role of metabolic energy in the transport of glutamate by invertebrate nerve, Biochim. Biophys. Acta 318: 123.Google Scholar
  40. Baker, P.F., and Shaw, T.I., 1965, A comparison of the phosphorus metabolism of intact squid nerve with that of isolated axoplasm and sheath, J. Physiol. 180: 424.PubMedGoogle Scholar
  41. Baker, P.F., and Willis, J.S., 1912, Inhibition of the sodium pump in squid giant axons by cardiac glycosides: Dependence of extracellular ions and metabolism, J. Physiol. 224: 463.Google Scholar
  42. Baker, P.F., Hodgkin, A.L., and Shaw, T.I., 1961, Replacement of the protoplasm of a giant nerve fibre with artificial solutions, Nature (London) 190: 885.Google Scholar
  43. Baker, P.F., Hodgkin, A.L., and Shaw, T.I., 1962a, Replacement of the axoplasm of giant nerve fibres with artificial solutions, J. Physiol 164: 330.PubMedGoogle Scholar
  44. Baker, P.F., Hodgkin, A.L., and Shaw, T.I., 1962b, The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons, J. Physiol. 164: 355.PubMedGoogle Scholar
  45. Baker, P.F., Hodgkin, A.L., and Meves, H., 1964, The effect of diluting the internal solution on the electrical properties of a perfused giant axon, J. Physiol. 110: 541.Google Scholar
  46. Baker, P.F., Blaustein, M.P., Hodgkin, A.L., and Steinhardt, R.A., 1969a, The influence of calcium on sodium efflux in squid axons, J. Physiol. 200: 431.PubMedGoogle Scholar
  47. Baker, P.F., Blaustein, M.P., Keynes, R.D., Manil, J., Shaw, T.I., and Steinhardt, R.A., 1969b, The ouabain sensitive fluxes of sodium and potassium in squid giant axons, J. Physiol. 200: 459.PubMedGoogle Scholar
  48. Baker, P.F., Hodgkin, A.L., and Ridgeway, E.B., 1971, Depolarization and calcium entry in squid giant axons, J. Physiol. 218: 709.PubMedGoogle Scholar
  49. Baker, P.F., Meves, H., and Ridgeway, E.B., 1973a, Calcium entry in response to maintained depolarization of squid axons, J. Physiol 231: 521.Google Scholar
  50. Baker, P.F., Meves, H., and Ridgeway, E.B., 1913b, Effects of manganese and other agents on the calcium uptake that follows depolarization of squid axons, J. Physiol 231: 511.Google Scholar
  51. Barnola, F.V., Camejo, G., and Villegas, R., 1971, Ionic channels and nerve membrane lipoproteins: DDT-nerve membrane interaction, Int. J. Neurosci. 1: 309.PubMedGoogle Scholar
  52. Bear, R.S., and Schmitt, F.O., 1939, Electrolytes in the axoplasm of the great nerve fibers of the squid, J. Cell Comp. Physiol 14: 205.Google Scholar
  53. Bear, R.S., Schmitt, F.O., and Young, J.Z., 1931a, The ultrastructure of nerve axoplasm, Proc. R. Soc. London Ser. B 123: 505.Google Scholar
  54. Bear, R.S., Schmitt, F.O., and Young, J.Z., 1931b, Investigations on the protein constituents of nerve axoplasm, Proc. R. Soc. London Ser. B 123: 520.Google Scholar
  55. Begenisich, T., and Lynch, C., 1914, Effects of internal divalent cations on voltage-clamped squid axons, J. Gen. Physiol 63: 615.Google Scholar
  56. Bezanilla, F., and Armstrong, C.M., 1912, Negative conductance caused by entry of sodium and cesium ions into the potassium channels of the squid axons, J. Gen. Physiol 60: 588.Google Scholar
  57. Bezanilla, F., and Armstrong, C.M., 1915, Kinetic properties and inactivation of the gating currents of sodium channels in squid axon, Philos. Trans. R. Soc. London Ser. B 210: 449.Google Scholar
  58. Bicher, H.I., and Ohki, S., 1912, Intracellular pH electrode: Experiments on the giant squid axon, Biochim. Biophys. Acta 255: 900.Google Scholar
  59. Binstock, L., and Lecar, H., 1969, Ammonium ion currents in the squid giant axon, J. Gen. Physiol 53: 342.PubMedGoogle Scholar
  60. Blaustein, M.P., and Goldman, D.E., 1966, Action of anionic and cationic nerve blocking agents: Experiment and interpretation, Science 153: 429.PubMedGoogle Scholar
  61. Blaustein, M.P., and Hodgkin, A.L., 1969, The effect of cyanide on the efflux of calcium from squid axons, J. Physiol 200: 491.Google Scholar
  62. Blaustein, M.P., and Russell, J.M., 1915, Sodium—calcium exchange and calcium—calcium exchange in internally dialyzed squid giant axons, J. Membrane Biol 22: 285.Google Scholar
  63. Boell, E.J., and Nachmansohn, D., 1940, Localization of choline esterase in nerve fibers, Science 92: 513.PubMedGoogle Scholar
  64. Bonting, S.L., and Caravaggio, L.L., 1962, Sodium-potassium-activated adenosine triphosphatase in the squid giant axon, Nature (London) 194: 1180.Google Scholar
  65. Borisy, G.G., and Taylor, E.W., 1967, The mechanism of action of colchicine: Binding of colchicine-3H to cellular protein, J. Cell Biol 34: 525.PubMedGoogle Scholar
  66. Boron, W.F., and DeWeer, P., 1976, Intracellular pH transients in squid giant axons caused by CO2, NH3 and metabolic inhibitors, J. Gen. Physiol. 67: 91.PubMedGoogle Scholar
  67. Borradaile, L.A., Potts, F.A., Eastham, L.E.S., and Saunders, J.T., 1967, The Invertebrata, 4th ed., Revised by G.A. Kerkut, pp. 636–647, Cambridge University Press, London.Google Scholar
  68. Bradbury, H.E., and Aldrich, F.A., 1969a, Observations on locomotion of the short-finned squid, Illex illecerebrosus illecerebrosus Lesueur, 1821), in captivity, Can. J. ZooL 47: 741.Google Scholar
  69. Bradbury, H.E., and Aldrich, F.A., 19696, Observations on feeding of the squid Illex illecerebrosus illecerebrosus (Lesueur, 1821) in captivity, Can. J. Zool. 47: 913.Google Scholar
  70. Brady, R.O., and Carbone, E., 1973, Comparison of the effects of delta9-tetrahydrocannabinol, 11-hydroxy-delta9-tetrahydrocannabinol and ethanol on the electrophysiological activity of the giant axon of the squid, Neuropharmacology 12: 601.PubMedGoogle Scholar
  71. Bray, G.A., 1960, A simple efficient liquid scintillator for counting aqueous solutions in liquid scintillation counter, Anal. Biochem. 1: 279.Google Scholar
  72. Brinley, F.J., Jr., and Mullins, L.J., 1965, Ion fluxes and transference number in squid axons, J. Neurophysiol. 28: 526.PubMedGoogle Scholar
  73. Brinley, F.J., Jr., and Mullins, L.J., 1967, Sodium extrusion by internally dialyzed squid axons, J. Gen. Physiol. 50: 2303.PubMedGoogle Scholar
  74. Brinley, F.J., Jr., and Mullins, L.J., 1968, Sodium fluxes in internally dialyzed squid axons, J. Gen. Physiol. 52: 181.PubMedGoogle Scholar
  75. Brinley, F.J., Jr., and Scarpa, A., 1975, Ionized magnesium concentration in axoplasm of dialyzed squid axons, FEBS Lett. 50: 82.PubMedGoogle Scholar
  76. Brinley, F.J., Jr., Spangler, S.G., and Mullins, L.J., 1975, Calcium and EDTA fluxes in dialyzed squid axons, J. Gen. Physiol. 66: 223.PubMedGoogle Scholar
  77. Brown, J.E., Cohen, L.B., DeWeer, P., Pinto, L.H., Ross, W.N., and Salzberg, B.M., 1975a, Arsenazo III, an indicator of rapid changes of intracellular ionized calcium in squid giant axons, Biol. Bull. 149: 421.Google Scholar
  78. Brown, J.E., Cohen, L.B., DeWeer, P., Pinto, L.H., Ross, W.N., and Salzberg, B.M., 1975b, Rapid changes of intracellular free calcium concentration, Biophys. J. 15: 1155.PubMedGoogle Scholar
  79. Brzin, M., Dettbarn, W.-D., Rosenberg, P., and Nachmansohn, D., 1965a, Cholinesterase activity per unit surface area of conducting membranes, J. Cell Biol. 26: 353.PubMedGoogle Scholar
  80. Brzin, M., Dettbarn, W.-D., and Rosenberg, P., 1965b, Penetration of neostigmine, physostigmine and paraoxon into the squid giant axon, Biochem. Pharmacol. 14: 919.Google Scholar
  81. Bullock, T.H., Nachmansohn, D., and Rothenberg, M.A., 1946, Effects of inhibitors of choline esterase on the nerve action potential, J. Neurophysiol. 9: 9.PubMedGoogle Scholar
  82. Bullough, W.S., 1950, Practical Invertebrate Anatomy, Macmillan, London.Google Scholar
  83. Bures, J., Petran, M., and Zachar, J., 1967, Electrophysiological Methods in Biological Research, 3rd ed., Academic Press, New York.Google Scholar
  84. Caldwell, P.C., 1958, Studies on the internal pH of large muscle and nerve fibres, J. Physiol. 142: 22.PubMedGoogle Scholar
  85. Caldwell, P.C., and Keynes, R.D., 1957, The utilization of phosphate bond energy for sodium extrusion from giant axons, J. Physiol. 137: 12 P.PubMedGoogle Scholar
  86. Caldwell, P.C., and Keynes, R.D., 1959, The effect of ouabain on the efflux of sodium from squid giant axon, J. Physiol. 148: 8 P.Google Scholar
  87. Caldwell, P.C., and Lowe, A.G., 1970, The influx of orthophosphate into squid giant axons, J. Physiol. 207: 271.PubMedGoogle Scholar
  88. Caldwell, P.C., Hodgkin, A.L., Keynes, R.D., and Shaw, T.I., 1960, The effects of injecting “energy rich” phosphate compounds on the active transport of ions in the giant axons of Loligo, J. Physiol. 152: 561.PubMedGoogle Scholar
  89. Caldwell, P.C., Hodgkin, A.L., Keynes, R.D., and Shaw, T.I., 1964, The rate of formation and turnover of phosphorus compounds in squid giant axons, J. Physiol. 171: 119.PubMedGoogle Scholar
  90. Camejo, G., Villegas, G.M., Barnola, F.V., and Villegas, R., 1969, Characterization of two different membrane fractions isolated from the first stellar nerves of the squid Dosidicus gigas, Biochim. Biophys. Acta 193: 247.Google Scholar
  91. Camougis, G., and Takman, B.H., 1971, Nerve and nerve muscle preparations, in: Methods in Pharmacology, Vol. 1 (A. Schwartz, ed.) Chapt. 1, pp. 1–40, Appleton-Century-Crofts, New York.Google Scholar
  92. Canessa, M., 1965, Properties of ATPase activities of membrane fractions from the sheath of squid giant axons, J. Cell. Comp. Physiol. 66: 165.Google Scholar
  93. Canessa-Fischer, M., Zambrano, F., and Riveros-Moreno, V., 1967, Properties of the ATPase system from the sheath of squid giant axons, Arch. Biochem. Biophys. 122: 658.Google Scholar
  94. Canessa-Fischer, M., Zambrano, F., and Rojas, E., 1968, The loss and recovery of the sodium pump in perfused giant axons, J. Gen. Physiol. 51: 162S.PubMedGoogle Scholar
  95. Carbone, E., Sisco, K., and Warashima, A., 1974, Physicochemical properties of 2,6 TNS binding sites in squid giant axons: Involvement of water molecules in the excitable process, J. Membrane Biol. 18: 263.Google Scholar
  96. Carpenter, D.O., 1973, Electrogenic sodium pump and high specific resistance in nerve cell bodies of the squid, Science 179: 1336.PubMedGoogle Scholar
  97. Carpenter, D.O., Hovey, M.M., and Bak, A.F., 1971, Intracellular conductance of Aplysia neurons and squid axon as determined by a new technique, Int. J. Neurosci. 2: 35.PubMedGoogle Scholar
  98. Carpenter, D.O., Hovey, M.M., and Bak, A.F., 1975, Resistivity of axoplasm. II. Internal resistivity of giant axons of squid and Myxicola, J. Gen. Physiol. 66: 139.PubMedGoogle Scholar
  99. Cavanaugh, G.M. (ed.), 1975, Formulae and Methods VI of the Marine Biological Laboratory Chemical Room, pp. 67–68, Marine Biological Laboratory, Woods Hole, Massachusetts.Google Scholar
  100. Chailaklyou, L.M., 1961, Measurement of the resting and action potentials of the giant fibre of the squid in various conditions of recording, Biophysics 6: 344.Google Scholar
  101. Chambers, R., and Kao, C.-Y., 1952, The effect of electrolytes on the physical state of the nerve axon of the squid and of Stentor, a protozoon, Exp. Cell Res. 3: 564.Google Scholar
  102. Chandler, W.K., and Hodgkin, A.L., 1965, The effect of internal sodium on the action potential in the presence of different internal anions, J. Physiol. 181: 594.PubMedGoogle Scholar
  103. Chandler, W.K., and Meves, H., 1965, Voltage clamp experiments on internally perfused giant axons, J. Physiol. 180: 788.PubMedGoogle Scholar
  104. Chandler, W.K., and Meves, H., 1970a, Sodium and potassium currents in squid axons perfused with fluoride solutions, J. Physiol. 211: 623.PubMedGoogle Scholar
  105. Chandler, W.K., and Meves, H., 1970b, Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution, J. Physiol. 211: 653.PubMedGoogle Scholar
  106. Chandler, W.K., and Meves, H., 1970c, Rate constants associated with changes in sodium conductance in axons perfused with sodium fluoride, J. Physiol. 211: 679.PubMedGoogle Scholar
  107. Chandler, W.K., and Meves, H., 1970d, Slow changes in membrane permeability and long-lasting action potentials in axons perfused with fluoride solutions, J. Physiol. 211: 707.PubMedGoogle Scholar
  108. Chandler, W.K., Hodgkin, A.L., and Meves, H., 1965, The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons, J. Physiol. 180: 821.PubMedGoogle Scholar
  109. Chapman, R.A., 1967, Dependence on temperature of the conduction velocity of the action potential of the squid giant axon, Nature (London) 213: 1143.Google Scholar
  110. Coelho, R.R., Goodman, J.W., and Bowers, M.B., 1960, Chemical studies of the satellite cells of the squid giant nerve fibre, Exp. Cell Res. 20: 1.Google Scholar
  111. Cohen, L.B., and Landowne, D., 1974, The temperature dependence of the movement of sodium ions associated with nerve impulses, J. Physiol. 236: 95.PubMedGoogle Scholar
  112. Cohen, L.B., Keynes, R.D., and Hilla, B., 1968, Light scattering and birefringence changes during nerve activity. Nature (London) 218: 438.Google Scholar
  113. Cohen, L.B., Hille, B., and Keynes, R.D., 1970, Changes in axon birefringence during the action potential, J. Physiol 211: 495.PubMedGoogle Scholar
  114. Cohen, L.B., Hille, B., Keynes, R.D., Landowne, D., and Rojas, E., 1971, Analysis of the potential-dependent changes in optical retardation in the squid giant axon, J. Physiol. 218: 205.PubMedGoogle Scholar
  115. Cohen, L.B., Keynes, R.D., and Landowne, D., 1972a, Changes in light scattering that accompany the action potential in squid giant axons: Potential dependent components, J. Physiol. 224: 701.PubMedGoogle Scholar
  116. Cohen, L.B., Keynes, R.D., and Landowne, D., 1972b, Changes in axon light scattering that accompany the action potential: Current dependent components, J. Physiol. 224: 727.PubMedGoogle Scholar
  117. Cohen, L.B., Salzberg, B.M., Davita, H.V., Ross, W.N., Landowne, D., Waggoner, A.S., and Wang, C.H., 1974, Changes in axon fluorescence during activity: Molecular probes of membrane potential, J. Membrane Biol. 19: 1.Google Scholar
  118. Cohen, M., Palti, Y., and Adelman, W.J., 1975, Ionic dependence of sodium currents in squid axons analyzed in terms of specific ion “channel” interactions, J. Membrane Biol. 24: 201.Google Scholar
  119. Cole, K.S., 1941, Rectification and inductance in the squid axon membrane, J. Gen. Physiol. 25: 29.PubMedGoogle Scholar
  120. Cole, K.S., 1949, Dynamic electrical characteristics of the squid axon membrane, Arch. Sci. Physiol. 3: 253.Google Scholar
  121. Cole, K.S., 1968, Membrane, Ions and Impulses, University of California Press, Berkeley and Los Angeles.Google Scholar
  122. Cole, K.S., 1975, Resistivity of axoplasm. 1. Resistivity of extruded squid axoplasm, J. Gen. Physiol 66: 133.PubMedGoogle Scholar
  123. Cole, K.S., and Baker, R.F., 1941, Longitudinal impedance of the squid giant axon, J. Gen. Physiol. 24: 771.PubMedGoogle Scholar
  124. Cole, K.S., and Curtis, H.J., 1939, Electrical impedance of the squid giant axon during activity, J. Gen. Physiol 22: 649.PubMedGoogle Scholar
  125. Cole, K.S., and Gilbert, D.L., 1970, Jet propulsion of squid, Biol Bull 138: 245.Google Scholar
  126. Cole, K.S., and Marmont, G., 1942, The effect of ionic environment upon the longitudinal impedance of the squid giant axon, Fed. Proc. Fed. Am. Soc. Exp. Biol 1: 15.Google Scholar
  127. Cole, K.S., and Moore, J.W., 1960, Ionic current measurements in the squid giant axon membrane, J. Gen. Physiol 44: 123.PubMedGoogle Scholar
  128. Condrea, E., and Rosenberg, P., 1968, Demonstration of phospholipid splitting as the factor responsible for increased permeability and block of axonal conduction induced by snake venom. II. Study on squid axons, Biochim. Biophys. Acta 150: 271.Google Scholar
  129. Conti, F., and Tasaki, I., 1970, Changes in extrinsic fluorescence in squid axons during voltage-clamp, Science 169: 1322.PubMedGoogle Scholar
  130. Conti, F., DeFelice, L.J., and Wanke, E., 1975, Potassium and sodium ion current noise in the membrane of the squid giant axon, J. Physiol 248: 45.PubMedGoogle Scholar
  131. Cooke, I., and Lipkin, M., Jr., 1972, Cellular Neurophysiology: A Source Book, Holt, Rinehart and Winston, New York.Google Scholar
  132. Cooke, I.M., Diamond, J.M., Grinnell, A.D., Hagiwara, S., and Sakata, H., 1968, Suppression of the action potential in nerve by nitrobenzene derivatives, Proc. Natl Acad. Sci. U.S.A. 60: 470.PubMedGoogle Scholar
  133. Cuervo, L.A., and Adelman, W.J., 1970, Equilibrium and kinetic properties of the interaction between tetrodotoxin and the excitable membrane of the squid giant axon, J. Gen. Physiol 55: 309.PubMedGoogle Scholar
  134. Curtis, H.J., and Cole, K.S., 1940, Membrane action potentials from the squid giant axon, J. Cell Comp. Physiol 15: 147.Google Scholar
  135. Curtis, H.J., and Cole, K.S., 1942, Membrane resting and action potentials from the squid giant axon, J. Cell Comp. Physiol 19: 135.Google Scholar
  136. Davila, H.V., Salzberg, B.M., Cohen, L.B., and Waggoner, A.S., 1972, Changes in fluorescence of squid axons during activity, Biol Bull. 134: 457.Google Scholar
  137. Davila, H.V., Salzberg, B.M., Cohen, L.B., and Waggoner, A.S., 1973, A large change in axon fluorescence that provides a promising method for measuring membrane potential, Nature (London) New Biol 241: 159.Google Scholar
  138. Davila, H., Cohen, L.B., Salzberg, B.M., and Shrivastav, B.B., 1974, Changes in ANS and TNS fluorescence in giant axons from Loligo, J. Membrane Biol 15: 29.Google Scholar
  139. Davison, P.F., and Huneeus, F.C., 1970, Fibrillar proteins from squid axons. II. Microtubule protein, J. Mol Biol 52: 429.PubMedGoogle Scholar
  140. Davison, P.F., and Taylor, E.W., 1960, Physical—chemical studies of proteins of squid nerve axoplasm with special reference to the axon fibrous protein, J. Gen. Physiol 43: 801.PubMedGoogle Scholar
  141. DeFelice, L.J., Wanke, E., and Conti, F., 1975, Potassium and sodium current noise from squid axon membranes, Fed. Proc. Fed. Am. Soc. Exp. Biol 34: 1338.Google Scholar
  142. Deffner, G.G.J., 1961a, Chemical investigations of the giant nerve fibers of the squid. V. Quaternary ammonium ions in axoplasm, Biochim. Biophys. Acta 50: 555.Google Scholar
  143. Deffner, G.G.J., 19616, The dialyzable free organic constituents of squid blood: A comparison with nerve axoplasm, Biochim. Biophys. Acta 47: 378.Google Scholar
  144. Deffner, G.G.J., and Hafter, R.E., 1959a, Chemical investigations of the giant nerve fibers of the squid. I. Fractionation of dialyzable constituents of axoplasms and quantitative determination of the free amino acids, Biochim. Biophys. Acta 32: 362.Google Scholar
  145. Deffner, G.G.J., and Hafter, R.E., 1959b, Chemical investigations of the giant nerve fibers of the squid. II. Detection and identification of cysteic acid amide in squid nerve axoplasm, Biochim. Biophys. Acta 35: 334.Google Scholar
  146. Deffner, G.G.J., and Hafter, R.E., 1960a, Chemical investigations of the giant nerve fibers of the squid. III. Identification and quantitative estimation of free organic ninhydrin-negative constituents, Biochim. Biophys. Acta 42: 189.Google Scholar
  147. Deffner, G.G.J., and Hafter R.E., 1960b, Chemical investigations of the giant nerve fibers of the squid. IV. Acid-base balance in axoplasm, Biochim. Biophys. Acta 42: 200.Google Scholar
  148. de Groof, R.C., and Narahashi, T., 1974, Effects of holothurin A on squid axon membranes, Fed. Proc. Fed. Am. Soc. Exp. Biol. 33: 319.Google Scholar
  149. Dettbarn, W.-D., and Davis, F.A., 1962, “Sucrose gap” technique applied to single-nerve-fiber preparation, Biochim. Biophys. Acta 60:648.Google Scholar
  150. Dettbarn, W.-D., and Rosenberg, P., 1962, Sources of error in relating electrical and acetylcholinesterase activity, Biochem. Pharmacol. 11: 1025.Google Scholar
  151. Dettbarn, W.-D., Heilbronn, E., Hoskin, F.C.G., and Katz, R., 1972, The effects of pH on penetration and action of procaine 14C, atropine 3H, n butanol 14C and halothane 14C in single giant axons of the squid, Neuropharmacology 11: 727.PubMedGoogle Scholar
  152. DeWeer, P., 1968, Restoration of a potassium requiring sodium pump in squid giant axons poisoned with CN and depleted of arginine, Nature (London) 219: 730.Google Scholar
  153. DeWeer, P., 1970, Effects of intracellular adenosine-5′-diphosphate and orthophosphate on the sensitivity of sodium efflux from squid axon to external sodium and potassium, J. Gen. Physiol. 56: 583.Google Scholar
  154. DeWeer, P., and Geduldig, D., 1973, Electrogenic sodium pump in squid giant axon, Science 179: 1326.Google Scholar
  155. Dipolo, R., 1973, Calcium efflux from internally dialyzed squid giant axons, J. Gen. Physiol. 62: 575.PubMedGoogle Scholar
  156. Dipolo, R., 1974, Effect of ATP on the calcium efflux in dialyzed squid giant axons, J. Gen. Physiol. 64: 503.PubMedGoogle Scholar
  157. Dipolo, R., Requena, J., Brinley, F.J., Jr., Mullins, L.J., Scarpa, A., and Tiffert, T., 1976, Ionized calcium concentration in squid axons, J. Gen. Physiol. 67: 433.PubMedGoogle Scholar
  158. Doane, M.G., 1967, Fluorometric measurement of pyridine nucleotide reduction in the giant axon of the squid, J. Gen. Physiol. 50: 2603.PubMedGoogle Scholar
  159. Dole, W.P., and Simon, E.J., 1974, Effects of levorphanol on phospholipid metabolism in the giant axon of the squid, J. Neurochem. 22: 183.PubMedGoogle Scholar
  160. Easton, D.M., and Swenberg, C.E., 1975, Temperature and impulse velocity in giant axon of squid, Loligo pealei, Am. J. Physiol 229: 1249.PubMedGoogle Scholar
  161. Eyrich, T.L., Barrett, D., and Rock, P.A., 1976, Phospholipase activity in squid and frog axons, J. Neurochem. 26: 1079.PubMedGoogle Scholar
  162. Fischer, S., and Litvak, S., 1967, The incorporation of microinjected 14C-amino acids into TCA insoluble fractions of the giant axon of the squid, J. Cell. Physiol. 70: 69.PubMedGoogle Scholar
  163. Fischer, S., Cellino, M., Gariglio, P., and Tellez-Nagel, M.I., 1968, Protein and RNA metabolism of squid axons (Dosidicus gigas), J. Gen. Physiol. 51: 72S.PubMedGoogle Scholar
  164. Fischer, S., Gariglio, P., and Tarifeno, E., 1969, Incorporation of H3-uridine and the isolation and characterization of RNA from squid axon, J. Cell. Physiol. 74: 155.PubMedGoogle Scholar
  165. Fishman, H.M., 1970, Direct and rapid description of the individual ionic currents of squid axon membrane by ramp potential control, Biophys. J. 10: 799.PubMedGoogle Scholar
  166. Fishman, H.M., 1973, Relaxation spectra of potassium channel noise from squid axon membranes, Proc. Natl. Acad. Sci. U.S.A. 70: 876.PubMedGoogle Scholar
  167. Fishman, H.M., 1975a, Patch voltage clamp of squid axon membrane, J. Membrane Biol. 24: 26S.Google Scholar
  168. Fishman, H.M., Poussart, D.J.M., and Moore, L.E., 1975a, Noise measurements in squid axon membrane, J. Membrane Biol. 24: 281.Google Scholar
  169. Fishman, H.M., Moore, L.E., and Poussart, D.J.M., 19756, Potassium-ion conduction noise in squid axon membrane, J. Membrane Biol 24: 305.Google Scholar
  170. Frazier, D.T., and Narahashi, T., 1975, Tricaine (MS-222): Effects on ionic conductances of squid axon membranes, Eur. J. Pharmacol 33: 313.PubMedGoogle Scholar
  171. Frazier, D.T., Narahashi, T., and Moore, J. W., 1969, Hemicholinium 3: Noncholinergic effects on squid axons, Science 163: 820.PubMedGoogle Scholar
  172. Frazier, D.T., Narahashi, T., and Yamada, M., 1970, The site of action and active form of local anesthetics. II. Experiments with quaternary compounds, J. Pharmacol. Exp. Ther. 171: 45.PubMedGoogle Scholar
  173. Frazier, D.T., Murayama, K., Abbott, N.J., and Narahashi, T., 1972, Effects of morphine on internally perfused squid giant axons, Proc. Soc. Exp. Biol. Med. 139: 434.PubMedGoogle Scholar
  174. Frazier, D.T., Sevcik, C., and Narahashi, T., 1973a, Nicotine: Effect on nerve membrane conductances, Eur. J. Pharmacol. 22: 217.PubMedGoogle Scholar
  175. Frazier, D.T., Ohta, M., and Narahashi, T., 1973b, Nature of the morphine receptor present in the squid axon, Proc. Soc. Exp. Biol Med. 142: 1209.PubMedGoogle Scholar
  176. Frazier, D.T., Murayama, K., Abbott, N.J., and Narahashi, T., 1975, Comparison of the action of different barbiturates on squid axon, Eur. J. Pharmacol. 32: 102.PubMedGoogle Scholar
  177. Freeman, A.R., 1971, Electrophysiological activity of tetrodotoxin on the resting membrane of the squid giant axon, Comp. Biochem. Physiol. 40A: 71.Google Scholar
  178. Freeman, A.R., Reuben, J.P., Brandt, P.W., and Grundfest, H., 1966, Osmometrically determined characteristics of the cell membrane of squid and lobster giant axons, J. Gen. Physiol. 50: 423.PubMedGoogle Scholar
  179. Frumento, A.S., and Mullins, L.J., 1964, Potassium free effect in squid axons, Nature (London) 204: 1312.Google Scholar
  180. Gainer, H., Carbone, E., Singer, I., Sisco, K., and Tasaki, I., 1974, Depolarization-induced changes in the enzymatic radio-iodination of a protein on the internal surface of the squid giant axon membrane, Comp. Biochem. Physiol. 47A: 477.Google Scholar
  181. Geren, B.B., and Schmitt, F.O., 1954, The structure of the Schwann cell, and its relation to the axon in certain invertebrate nerve fibers, Proc. Natl. Acad. Sci. U.S.A. 40: 863.PubMedGoogle Scholar
  182. Gilbert, D.L., 1971, Internal perfusion of squid giant axon, in: Biophysics and Physiology of Excitable Membranes ( W.J. Adelman, Jr., ed.), pp. 264–273, Van Nostrand Reinhold, New York.Google Scholar
  183. Gilbert, D.L., and Ehrenstein, G. 1969, Effect of divalent cations on potassium conductance of squid axons: Determination of surface charge, Biophys. J. 9: 447.PubMedGoogle Scholar
  184. Giuditta, A., Dettbarn, W.-D., and Brzin, M., 1968, Protein synthesis in the isolated giant axon of the squid, Proc. Natl. Acad. Sci. U.S.A. 59: 1284.PubMedGoogle Scholar
  185. Giuditta, A., D’Udine, B., and Pepe, M., 1971, Uptake of protein by the giant axon of the squid, Nature (London) New Biol 229: 29.Google Scholar
  186. Goldman, D.E., 1964, A molecular structural basis for the excitation properties of axons, Biophys. J. 4: 167.Google Scholar
  187. Goldman, L., 1975, Pronase and models for the sodium conductance, J. Gen. Physiol 65: 551.PubMedGoogle Scholar
  188. Gruener, R., 1973, Excitability blockade of the squid giant axon by the venom of Latrodectus mactans (black widow spider), Toxicon 11: 155.PubMedGoogle Scholar
  189. Gruener, R., and Narahashi, T., 1972, The mechanism of excitability blockade by chlorpromazine, J. Pharmacol Exp. Ther. 181: 161.PubMedGoogle Scholar
  190. Grundfest, H., Kao, C.Y., and Altamirano, M., 1954, Bioelectric effects of ions microinjected into the giant axon of Loligo, J. Gen. Physiol 38: 245.PubMedGoogle Scholar
  191. Guttman, R., 1969, Temperature dependence of oscillation in squid axons: Comparison of experiments with computations, Biophys. J. 9: 269.PubMedGoogle Scholar
  192. Guttman, R., and Barnhill, R., 1968a, Effect of low sodium, tetrodotoxin and temperature variation upon excitation, J. Gen. Physiol 51: 621.PubMedGoogle Scholar
  193. Guttman, R., and Barnhill, R., 1968b, Temperature dependence of accommodation and excitation in space-clamped axons, J. Gen. Physiol 51: 759.PubMedGoogle Scholar
  194. Guttman, R., and Barnhill, R., 1970, Oscillation and repetitive firing in squid axons: Comparison of experiments with computations, J. Gen. Physiol 55: 104.PubMedGoogle Scholar
  195. Guttman, R., and Hachmeister, L., 1971, Effect of calcium, temperature and polarizing currents upon alternating current excitation of space-clamped squid axons, J. Gen. Physiol 58: 304.PubMedGoogle Scholar
  196. Hagiwara, S., Eaton, D.C., Stuart, A.E., and Rosenthal, N.P., 1972, Cation selectivity of the resting membrane of squid axon, J. Membrane Biol 9: 373.Google Scholar
  197. Hallett, M., and Carbone, E., 1972, Studies of calcium influx into squid giant axons with aequorin, J. Cell Physiol 80: 219.PubMedGoogle Scholar
  198. Hallett, M., Schneider, A.S., and Carbone, E., 1972, Tetracycline fluorescence as probe for nerve membrane with some model studies using erythrocyte ghosts, J. Membrane Biol. 10: 31.Google Scholar
  199. Hawthorne, J.N., and Kai, M., 1970, Metabolism of phosphoinositides, in: Handbook of Neurochemistry, Vol. 3 ( A. Lajtha, ed.), pp. 491–508, Plenum Press, New York.Google Scholar
  200. Henderson, J.V., Jr., and Gilbert, D.L., 1975, Slowing of ionic currents in the voltage-clamped squid axon by helium pressure, Nature (London) 258: 351.Google Scholar
  201. Henkin, R.I., Stillman, I.S., Gilbert, D.L., and Lipicky, R.J., 1974, Ineffectiveness of lysergic acid diethyl amide — 25 (LSD) on altering Na-K currents in squid giant axon, Experientia 30: 916.PubMedGoogle Scholar
  202. Herzog, W.H., Feibel, R.M., and Bryant, S.H., 1964, The effect of aconitine on the giant axon of the squid, J. Gen. Physiol. 47: 719.PubMedGoogle Scholar
  203. Hidalgo, C., and Latorree, R., 1970a, Temperature dependence of non-electrolyte and sodium permeability in giant axon of squid, J. Physiol. 211: 173.PubMedGoogle Scholar
  204. Hidalgo, C., and Latorree, R., 19706, Effect of stimulation and hyperpolarization on non-electrolyte and sodium permeability in perfused axons of squid, J. Physiol. 211: 193.Google Scholar
  205. Hille, B., 1967, The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion, J. Gen. Physiol. 50: 1287.PubMedGoogle Scholar
  206. Hille, B., 1975, An essential ionized acid group in sodium channels, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34: 1318.Google Scholar
  207. Hinke, J.A.M., 1961, The measurement of sodium and potassium activities in the squid axon by means of cation-selective glass microelectrodes, J. Physiol. 156: 314.PubMedGoogle Scholar
  208. Hirsch, H.R., 1965, Squid giant axon: Repetitive responses to alternating current stimulation, Nature (London) 208: 1218.Google Scholar
  209. Hodgkin, A.L., 1965, The Conduction of the Nervous Impulse, Liverpool University Press, England.Google Scholar
  210. Hodgkin, A., 1975, The optimum density of sodium channels in an unmyelinated nerve, Philos. Trans. R. Soc. London Ser. B 270: 297.Google Scholar
  211. Hodgkin, A.L., and Chandler, W.K., 1965, Effects of changes in ionic strength on inactivation and threshold in perfused nerve fibers of Loligo, J. Gen. Physiol. 48: 27.PubMedGoogle Scholar
  212. Hodgkin, A.L., and Huxley, A.F., 1939, Action potentials recorded from inside a nerve fibre, Nature (London) 144: 710.Google Scholar
  213. Hodgkin, A.L., and Huxley, A.F., 1945, Resting and action potentials in single nerve fibres, J. Physiol. 104: 176.PubMedGoogle Scholar
  214. Hodgkin, A.L., and Huxley, A.F., 1952a, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Physiol. 116: 449.PubMedGoogle Scholar
  215. Hodgkin, A.L., and Huxley, A.F., 1952b, The components of membrane conductance in the giant axons of Loligo, J. Physiol. 116: 473.PubMedGoogle Scholar
  216. Hodgkin, A.L., and Huxley, A.F., 1952c, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo, J. Physiol. 116: 497.PubMedGoogle Scholar
  217. Hodgkin, A.L., and Huxley, A.F., 1952d, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117: 500.PubMedGoogle Scholar
  218. Hodgkin, A.L., and Katz, B., 1949a, The effect of temperature on the electrical activity of the giant axon of squid, J. Physiol. 109: 240.PubMedGoogle Scholar
  219. Hodgkin, A.L., and Katz, B., 19496, The effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol. 108: 37.Google Scholar
  220. Hodgkin, A.L., and Keynes, R.D., 1955, Active transport of cations in giant axons from Sepia and Loligo, J. Physiol. 128: 28.PubMedGoogle Scholar
  221. Hodgkin, A.L., and Keynes, R.D., 1957, Movements of labelled calcium in squid giant axons, J. Physiol. 138: 253.PubMedGoogle Scholar
  222. Hodgkin, A.L., Huxley, A.F., and Katz, B., 1952, Measurement of current-voltage relations in the membrane of the giant axon of Loligo, J. Physiol. 116: 424.PubMedGoogle Scholar
  223. Hoskin, F.C.G., 1966, Anaerobic glycolysis in parts of the giant axon of squid, Nature (London) 210: 856.Google Scholar
  224. Hoskin, F.C.G., 1971, Diisopropylphosphofluoridate and tabun: Enzymatic hydrolysis and nerve function, Science 172: 1243.PubMedGoogle Scholar
  225. Hoskin, F.C.G., 1976, Distribution of diisopropylphosphofluoridate-hydrolyzing enzyme between sheath and axoplasm of squid giant axon, J. Neurochem. 26: 1043.PubMedGoogle Scholar
  226. Hoskin, F.C.G., and Brande, M., 1973, An improved sulphur assay applied to a problem of isethionate metabolism in squid axon and other nerves, J. Neurochem. 20: 1317.PubMedGoogle Scholar
  227. Hoskin, F.C.G., and Kordik, E.R., 1975, Rhodanese and DFPase in relation to isethionate in squid nerve, Biol. Bull. 149: 429.Google Scholar
  228. Hoskin, F.C.G., and Long, R.J., 1972, Purification of a DFP-hydrolyzing enzyme from squid head ganglion, Arch. Biochem. Biophys. 150: 548.Google Scholar
  229. Hoskin, F.C.G., and Rosenberg, P., 1964, Alteration of acetylcholine penetration into, and effects on, venom-treated squid axons by physostigmine and related compounds, J. Gen. Physiol. 47: 1117.PubMedGoogle Scholar
  230. Hoskin, F.C.G., and Rosenberg, P., 1965, Penetration of sugars, steroids, amino acids and other organic compounds into the interior of the squid giant axon, J. Gen. Physiol. 49: 47.PubMedGoogle Scholar
  231. Hoskin, F.C.G., and Rosenberg, P., 1967, Penetration of an organophosphorus compound into squid axon and its effects on metabolism and function, Science 156: 966.PubMedGoogle Scholar
  232. Hoskin, F.C.G., Rosenberg, P., and Brzin, M., 1966, Re-examination of the effect of DFP on electrical and cholinesterase activity of squid giant axon, Proc. Natl. Acad. Sci. U.S.A. 55: 1231.PubMedGoogle Scholar
  233. Hoskin, F.C.G., Kremzner, L.T., and Rosenberg, P., 1969, Effects of some cholinesterase inhibitors on the squid giant axon, Biochem. Pharmacol. 18: 1727.Google Scholar
  234. Hoskin, F.C.G., Pollock, M.L., and Prusch, R.D., 1975, An improved method for the measurement of 14CO2 applied to a problem of cysteine metabolism in squid nerve, J. Neurochem. 25: 445.PubMedGoogle Scholar
  235. Huneeus, F.C., and Davison, P.F., 1970, Fibrillar proteins from squid axons. I. Neurofilament protein, J. Mol. Biol. 52: 415.Google Scholar
  236. Huneeus-Cox, F., 1964, Electrophoretic and immunological studies of squid axoplasm proteins, Science 143: 1036.PubMedGoogle Scholar
  237. Huneeus-Cox, F., and Fernandez, H.L., 1967, Effect of specific antibodies on the excitability of internally perfused squid axons, J. Gen. Physiol. 50: 2407.Google Scholar
  238. Huneeus-Cox, F., and Smith, B.H., 1965, The effects of oxidizing, reducing and sulfhydryl reagents on the resting and action potentials of the internally perfused axon of Loligo pealeii, Biol. Bull. 129: 408.Google Scholar
  239. Huneeus-Cox, F., Fernandez, H.L., and Smith, B.H., 1966, Effects of redox and sulfhydryl reagents on the bioelectric properties of the giant axon of the squid, Biophys. J. 6: 675.PubMedGoogle Scholar
  240. Inoue, I., Kobatake, Y., and Tasaki, I., 1973, Excitability, instability and phase transitions in squid axon membrane under internal perfusion with dilute salt solutions, Biochim. Biophys. Acta 307: 471.Google Scholar
  241. Inoue, I., Tasaki, I., and Kobatake, Y., 1974, A study of the effects of externally applied sodium-ions and detection of spatial non-uniformity of the squid axon membrane under internal perfusion, Biophys. Chem. 2: 116.Google Scholar
  242. International Union of Biochemistry, 1973, Enzyme Nomenclature, 3rd ed., Elsevier, New York.Google Scholar
  243. Johnson, W., Soden, P.D., and Trueman, E.R., 1972, A study in jet propulsion: An analysis of the motion of the squid, Loligo vulgaris, J. Exp. Biol. 56: 155.Google Scholar
  244. Katz, B., 1966, Nerve, Muscle and Synapse, McGraw-Hill, New York.Google Scholar
  245. Keleti, G., and Lederer, W.H., 1974, Handbook of Micromethods for the Biological Sciences, Van Nostrand Reinhold, New York.Google Scholar
  246. Kerkut, G.A., 1967, Biochemical aspects of invertebrate nerve cells, in: Invertebrate Nervous System ( Kerkut, G.A., ed.), pp. 5–37, The University of Chicago Press.Google Scholar
  247. Keynes, R.D., 1951, The ionic movements during nervous activity, J. Physiol. 114: 119.PubMedGoogle Scholar
  248. Keynes, R.D., 1963, Chloride in the squid giant axon, J. Physiol. 169: 690.PubMedGoogle Scholar
  249. Keynes, R.D., and Lewis, P.R., 1951, The sodium and potassium content of cephalopod nerve fibres, J. Physiol. 114: 151.PubMedGoogle Scholar
  250. Keynes, R.D., and Rojas, E., 1974, Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon, J. Physiol. 239: 393.PubMedGoogle Scholar
  251. Keynes, R.D., and Rojas, E., 1976, The temporal and steady-state relationship between activation of the sodium conductance and movement of the gating particles in the squid giant axon, J. Physiol. 255: 157.PubMedGoogle Scholar
  252. Keynes, R.D., Bezanilla, F., Rojas, E., and Taylor, R.E., 1975, The rate of action of tetradotoxin on sodium conductance in the squid giant axon, Philos. Trans. R. Soc. London Ser. B 270: 365.Google Scholar
  253. Kishimoto, U., and Adelman, W.J., Jr., 1964, Effect of detergent on electrical properties of squid axon membrane, J. Gen. Physiol. 47: 975.PubMedGoogle Scholar
  254. Koechlin, B.A., 1954, The isolation and identification of the major anion fraction of the axoplasm of squid giant nerve fiber, Proc. Natl. Acad. Sci. U.S.A. 40: 60.PubMedGoogle Scholar
  255. Koechlin, B.A., 1955, On the chemical composition of the axoplasm of squid giant nerve fibers with particular reference to its ion pattern, Biophys. Biochem. Cytol. 1: 511.Google Scholar
  256. Kootsey, J.M., 1975, Voltage clamp simulation, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34: 1343.Google Scholar
  257. Koppenhofer, E., 1967, Die Wirkung von Tetraathylammoniumchlorid auf die Membranstrome Ranvierscher Schnurringe von Xenopus laevis, Pfluegers Arch. Gesamte Physiol. Menschen Tiere 293: 34.Google Scholar
  258. Korey, S.R., 1950, Permeability of axonal surface membranes to amino acids, Fed. Proc. Fed. Am. Soc. Exp. Biol. 9: 191.Google Scholar
  259. Korey, S.R., 1951, Effect of Dilantin and Mesantoin on the giant axon of the squid, Proc. Soc. Exp. Biol. Med. 76: 297.PubMedGoogle Scholar
  260. Kremzner, L.T., and Rosenberg, P., 1971, Relationship of acetylcholinesterase activity to axonal conduction, Biochem. Pharmacol. 20: 2953.Google Scholar
  261. Krolenko, S.A., and Nikol’skii, N.N., 1967, Penetration of sugars into the squid giant axon (Loligo-vulgaris), Tsitologiya 9: 273.Google Scholar
  262. Kuffler, S.W., and Nicholls, J.G., 1976, From Neuron to Brain, Sinauer, Sunderland, Massachusetts.Google Scholar
  263. Lakshminarayanaiah, N., and Bianchi, C.P., 1975, Ca2+ concentration and interaction of long- lasting local anesthetics with the squid axon membrane, J. Pharm. Pharmacol. 27: 787.PubMedGoogle Scholar
  264. Landowne, D., 1975a, Sodium efflux from voltage clamped squid axons, Biol. Bull. 149: 434.Google Scholar
  265. Landowne, D., 1975b, A comparison of radioactive thallium and potassium fluxes in the giant axon of the squid, J. Physiol. 252: 79.PubMedGoogle Scholar
  266. LaRoe, E.T., 1973, Laboratory culture of squid, Fed. Proc. Fed. Am. Soc. Exp. Biol. 32: 2212.Google Scholar
  267. Larrabee, M.G., and Brinley, F.J., Jr., 1968, Incorporation of labelled phosphate into phospholipids in squid giant axons, J. Neurochem. 15: 533.PubMedGoogle Scholar
  268. Lasek, R.J., 1970, The distribution of nucleic acids in the giant axon of the squid (Loligo pealii), J. Neurochem. 17: 103.PubMedGoogle Scholar
  269. Lasek, R.J., Dabrowski, C., and Nordlander, R., 1973, Analysis of axoplasmic RNA from invertebrate giant axons, Nature (London) New Biol. 244: 162.Google Scholar
  270. Lasek, R.J., Gainer, H., and Przybylski, R.J., 1974, Transfer of newly synthesized proteins from Schwann cells to the squid giant axon, Proc. Natl. Acad. Sci. U.S.A. 71: 1188.PubMedGoogle Scholar
  271. Lasek, R.J., Gainer, H., and Barker, J., 1975, Transfer of newly synthesized proteins between glia and neurons: The squid giant axon as a model, Trans. Am. Soc. Neurochem. 6: 74.Google Scholar
  272. Latorre, R., and Hidalgo, M.C., 1969, Effect of temperature on resting potential in giant axons of squid, Nature (London) 221: 962.Google Scholar
  273. Levinson, S.R., and Meves, H., 1975, The binding of tritiated tetrodotoxin to squid giant axons, Philos. Trans. R. Soc. London Ser. B 270: 349.Google Scholar
  274. Lewis, P.R., 1952, The free amino acids of invertebrate nerve, Biochem J. 52: 330.PubMedGoogle Scholar
  275. Lipicky, R.J., Gilbert, D.L., and Stillman, I.M., 1972, Diphenylhydantoin inhibition of sodium conductance in squid giant axon, Proc. Natl. Acad. Sci. U.S.A. 69: 1758.PubMedGoogle Scholar
  276. Lowry, O.H., Passonneau, J.V., Schulz, D.W., and Rock, M.K., 1961, The measurement of pyridine nucleotides by enzymatic cycling, J. Biol. Chem. 236: 2746.PubMedGoogle Scholar
  277. Luxoro, M., and Yanez, E., 1968, Permeability of the giant axon of Dosidicus gigas to calcium ions, J. Gen. Physiol. 51: 115S.PubMedGoogle Scholar
  278. Marcus, D., Canessa-Fischer, M., Zampighi, G., and Fischer, S., 1972, The molecular organization of nerve membranes. VI. The separation of axolemma from Schwann cell membranes of giant and retinal squid axons by density gradient centrifugation, J. Membrane Biol. 9: 209.Google Scholar
  279. Marquis, J.K., and Mautner, H.G., 1974, The effect of electrical stimulation on the action of sulfhydryl reagents in the giant axon of squid: Suggested mechanisms for the role of thiol and disulfide groups in electrically-induced conformational changes, J. Membrane Biol. 15: 249.Google Scholar
  280. Martin, R., and Rosenberg, P., 1968, Fine structural alterations associated with venom action on squid giant nerve fibers, J. Cell Biol. 36: 341.PubMedGoogle Scholar
  281. Matsumoto, G., 1976, Transportation and maintenance of adult squid (Doryteuthis bleekeri) for physiological studies, Biol. Bull. 150: 279.Google Scholar
  282. Matsumoto, N., Inoue, I. and Kishimoto, V., 1970, The electrical impedance of the squid axon membrane measured between internal and external electrodes, Jpn. J. Physiol. 20: 516.Google Scholar
  283. Mauro, A., Conti, F., Dodge, F., and Schor, R., 1970, Subthreshold behavior and phenomen- ological impedance of the squid giant axon, J. Gen. Physiol. 55: 497.PubMedGoogle Scholar
  284. Mauro, A.R., Freeman, A.R., Cooley, J.W., and Ross, A., 1972, Propagated subthreshold oscillatory response and classical electrotonic response of squid giant axon, Biophysik 8: 118.PubMedGoogle Scholar
  285. Maxfield, M., 1953, Axoplasmic proteins of the squid giant nerve fiber with particular reference to the fibrous proteins, J. Gen. Physiol. 37: 201.PubMedGoogle Scholar
  286. Maxfield, M., and Hartley, R.W., 1957, Dissociation of the fibrous protein of nerve, Biochim. Biophys. Acta 24: 83.Google Scholar
  287. McColl, J.D., and Rossiter, R.J., 1951, Lipids of the nervous system of the squid Loligo pealii, J. Exp. Biol. 28: 116.PubMedGoogle Scholar
  288. McMahon, J.J., and Summers, W.C., 1971, Temperature effects on the developmental rate of squid (Loligo pealei) embryos, Biol. Bull. 141: 561.Google Scholar
  289. Mercer, M.C., 1970, Sur la limite septentrionale du calmar Loligo pealei Lesueur, Nat. Can. (Ottawa) 97: 823.Google Scholar
  290. Metuzals, J., 1969, Configuration of a filamentous network in the axoplasm of the squid (Loligo pealii L.) giant nerve fiber, J. Cell Biol. 43: 480.PubMedGoogle Scholar
  291. Metuzals, J., and Izzard, C.S., 1969, Spatial patterns of threadlike elements in the axoplasm of the giant nerve fiber of the squid (Loligo pealii L.) as disclosed by differential interference microscopy and by electron microscopy, J. Cell Biol. 43: 456.PubMedGoogle Scholar
  292. Meves, H., 1966a, Experiments on internally perfused squid giant axons, Ann. N. Y. Acad. Sci. 137: 807.PubMedGoogle Scholar
  293. Meves, H., 19666, The effects of veratridine on internally perfused giant axons, Arch. Ges. Physiol. 290: 211.Google Scholar
  294. Meves, H., 1974, The effect of holding potentials on the assymetry currents in squid giant axons, J. Physiol 243: 847.PubMedGoogle Scholar
  295. Meves, H., 1975a, Calcium currents in squid giant axon, Philos. Trans. R. Soc. London Ser. B 270: 377.Google Scholar
  296. Meves, H., 19756, Assymetry currents in intracellularly perfused squid giant axons, Philos. Trans. R. Soc. London Ser. B 270: 493.Google Scholar
  297. Meves, H., and Vogel, W., 1973, Calcium inward currents in internally perfused giant axons, J. Physiol. 235: 225.PubMedGoogle Scholar
  298. Mikulich, L.V., and Kozak, L.P., 1971, Experiment in the keeping of the Pacific squid under artificial conditions, Ekologiya 2: 94.Google Scholar
  299. Moore, J.W., and Adelman, W.J., Jr., 1961, Electronic measurement of the intracellular concentration and net flux of sodium in the squid axon, J. Gen. Physiol. 45: 77.PubMedGoogle Scholar
  300. Moore, J.W., and Cole, K.S., 1960, Resting and action potentials of the squid giant axon in vivo, J. Gen. Physiol. 43: 961.PubMedGoogle Scholar
  301. Moore, J.W., and Cox, E.B., 1976, A kinetic model for the sodium conductance system in squid axon, Biophys. J. 16: 171.PubMedGoogle Scholar
  302. Moore, J.W., Narahashi, T., and Ulbricht, W., 1964a, Sodium conductance shift in an axon internally perfused with a sucrose and low-potassium solution, J. Physiol. 172: 163.PubMedGoogle Scholar
  303. Moore, J.W., Ulbricht, W., and Takata, M., 1964b, Effect on ethanol on the sodium and potassium conductances of the squid axon membrane, J. Gen. Physiol. 48: 279.PubMedGoogle Scholar
  304. Moore, J.W., Anderson, N., Blaustein, M., Takata, M., Lettvin, J.Y., Pickard, W.F., Bernstein, T., and Pooler, J., 1966, Alkali cation selectivity of squid axon membrane, Ann. N. Y. Acad. Sci. 137: 818.PubMedGoogle Scholar
  305. Moore, J.W., Blaustein, M.P., Anderson, N.C., and Narahashi, T., 1967, Basis of tetrodotoxin’s selectivity in blockage of squid axons, J. Gen. Physiol. 50: 1401.PubMedGoogle Scholar
  306. Moore, J.W., Ramon, F., and Joyner, R.W., 1975a, Axon voltage-clamp simulations. II. Double sucrose-gap method, Biophys. J. 15: 25.Google Scholar
  307. Moore, J.W., Ramon, F., and Joyner, R.W., 19756, Axon voltage-clamp simulations. I. Methods and tests, Biophys. J. 15: 11.Google Scholar
  308. Moore, L.E., Tufts, M., and Soroka, M., 1975c, Light scattering spectroscopy of the squid axon membrane, Biochim. Biophys. Acta 382: 286.Google Scholar
  309. Mullins, L.J., 1956, The structure of nerve cell membranes, in: Molecular Structure and Functional Activity of Nerve Cells ( R.G. Grenell and L.J. Mullins, eds.), American Institute of Biological Science, Washington, D.C.Google Scholar
  310. Mullins, L.J., 1959, An analysis of conductance changes in squid axon, J. Gen. Physiol 42: 1013.PubMedGoogle Scholar
  311. Mullins, L.J., 1960, An analysis of pore size in excitable membranes, J. Gen. Physiol. 43: 105.PubMedGoogle Scholar
  312. Mullins, L.J. (ed.), 1965, A conference on newer properties of perfused squid axons, J. Gen. Physiol. 48:1.Google Scholar
  313. Mullins, L.J., 1966, Ion and molecular fluxes in squid axons, Ann. N. Y. Acad. Sci. 137: 830.PubMedGoogle Scholar
  314. Mullins, L.J., 1968, Ion fluxes in dialyzed squid axons, J. Gen. Physiol. 51: 146S.PubMedGoogle Scholar
  315. Mullins, L.J., and Brinley, F.J., Jr., 1967, Some factors influencing sodium extrusion by internally dialyzed squid axons, J. Gen. Physiol. 50: 2333.PubMedGoogle Scholar
  316. Mullins, L.J., and Brinley, F.J., Jr., 1969, Potassium fluxes in dialyzed squid axons, J. Gen. Physiol. 53: 704.PubMedGoogle Scholar
  317. Mullins, L.J., and Brinley, F.J., Jr., 1975, Sensitivity of calcium efflux from squid axons to changes in membrane potential, J. Gen. Physiol. 65: 135.PubMedGoogle Scholar
  318. Nachmansohn, D., 1971, Proteins in bioelectricity: Acetylcholine esterase and receptor, in: Handbook of Sensory Physiology, Vol. 1 (W.R. Loewenstein, ed.), Springer-Verlag, Berlin.Google Scholar
  319. Nachmansohn, D., and Neumann, E., 1975, Chemical and Molecular Basis of Nerve Activity (revised), Academic Press, New York.Google Scholar
  320. Nakamura, Y., Nakajima, S., and Grundfest, H., 1965, The action of tetrodotoxin on electrogenic components of squid giant axons, J. Gen. Physiol. 48: 985.Google Scholar
  321. Narahashi, T., 1963, Dependence of resting and action potentials on internal potassium in perfused squid giant axons, J. Physiol 169: 91.PubMedGoogle Scholar
  322. Narahashi, T., 1974, Chemicals as tools in the study of excitable membranes, Physiol Rev. 54: 813.PubMedGoogle Scholar
  323. Narahashi, T., and Anderson, N.C., 1967, Mechanism of excitation block by the insecticide allethrin applied externally and internally to squid giant axons, Toxicol Appl. Pharmacol 10: 529.Google Scholar
  324. Narahashi, T., and Tobias, J.M., 1964, Properties of axon membranes as affected by cobra venom, digitonin and proteases, Am. J. Physiol 207: 1441.PubMedGoogle Scholar
  325. Narahashi, T., and Wang, C.M., 1973, Effects of antiarrhythmic drugs on ionic conductances of squid axon membranes, Pharmacologist 15: 178.Google Scholar
  326. Narahashi, T., Anderson, N.C., and Moore, J.W., 1966, Tetrodotoxin does not block excitation from inside the nerve membrane, Science 153: 765.PubMedGoogle Scholar
  327. Narahashi, T., Anderson, N.C., and Moore, J.W., 1967a, Comparison of tetrodotoxin and procaine in internally perfused squid giant axon, J. Gen. Physiol 50: 1413.PubMedGoogle Scholar
  328. Narahashi, T., Moore, J.W., and Poston, R.N., 19676, Tetrodotoxin derivatives: Chemical structure and blockage of nerve membrane conductance, Science 156: 976.Google Scholar
  329. Narahashi, T., Moore, J.W., and Poston, R.N., 1969a, Anesthetic blocking of nerve membrane conductances by internal and external applications, J. Neurobiol 1: 3.PubMedGoogle Scholar
  330. Narahashi, T., Moore, J.W., and Shapiro, B.I., 19696, Condylactis toxin: Interaction with nerve membrane ionic conductances, Science 163: 680.Google Scholar
  331. Narahashi, T., Frazier, D.T., and Yamada, M., 1970, The side of action and active form of local anesthetics. I. Theory and pH experiments with tertiary compounds, J. Pharmacol Exp. Ther. 171: 32.Google Scholar
  332. Narahashi, T., Frazier, D., Deguchi, T., Cleaves, C.A., and Ernau, M.C., 1971a, The active form of pentobartital in squid giant axons, J. Pharmacol Exp. Ther. 177: 25.PubMedGoogle Scholar
  333. Narahashi, T., Albuquerque, E.X., and Deguchi, T., 19716, Effects of batrachotoxin on membrane potential and conductance of squid giant axons, J. Gen. Physiol 58: 54.Google Scholar
  334. Narahashi, T., Shapiro, B.I., Deguchi, T., Scuka, M., and Wang, C.M., 1972a, Effects of scorpion venom on squid axon membranes, Am. J. Physiol. 222: 850.PubMedGoogle Scholar
  335. Narahashi, T., Frazier, D.T., and Moore, J.W., 19726, Comparison of tertiary and quaternary amine local anesthetics in their ability to depress membrane ionic conductances, J. Neurobiol. 3: 267.Google Scholar
  336. Nastuk, W.L. (ed.), 1964, Physical Techniques in Biological Research, Vol. 5, Academic Press, New York.Google Scholar
  337. Neill, S.S.J., 1971, Notes on squid and cuttlefish: Keeping, handling and colour patterns, Pubbl. St. Zool. Napoli 39: 64.Google Scholar
  338. Ohta, M., and Narahashi, T., 1973, Sparteine interaction with nerve membrane potassium conductance, J. Pharmacbl. Exp. Ther. 187: 47.Google Scholar
  339. Ohta, M., Narahashi, T., and Keeler, R.F., 1973, Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons, J. Pharmacol. Exp. Ther. 184: 143.Google Scholar
  340. Oikawa, T., 1962, Electrical interactions between normal and TEA-treated zones of squid axon, Am. J. Physiol. 202: 865.PubMedGoogle Scholar
  341. Oikawa, T., Spyropoulos, C.S., Tasaki, I., and Teorell, T., 1961, Methods for perfusing the giant axon of Loligo pealii, Acta Physiol. Scand. 52: 195.Google Scholar
  342. Orrego, F., 1971, Protein degradation in squid giant axons, J. Neurochem. 18: 2249.PubMedGoogle Scholar
  343. Oschman, J.L., Hall, T.A., Peters, P.D., and Wall, B.J., 1974, Association of calcium with membranes of squid giant axon, J. Cell Biol. 61: 156.PubMedGoogle Scholar
  344. Packard, A., 1969, Jet propulsion and the giant fibre response of Loligo, Nature (London) 221: 875.Google Scholar
  345. Parmentier, J.L., and Narahashi, T., 1975, Effects of hornet venom on squid axon membranes, Biol. Bull. 149: 440.Google Scholar
  346. Pepe, I.M., Giuditta, A., and Cimarra, P., 1975, Inhibition of neuronal protein synthesis in the giant fibre system of the squid by a high potassium concentration, J. Neurochem. 24: 1271.PubMedGoogle Scholar
  347. Pickard, W.F., Lettvin, J.Y., Moore, J.W., Takata, M., Pooler, J., and Bernstein, T., 1964, Caesium ions do not pass the membrane of the giant axon, Proc. Natl. Acad. Sci. U.S.A. 52: 1177.PubMedGoogle Scholar
  348. Robertson, J.D., 1960, The molecular structure and contact relationships of cell membranes, Prog. Biophys. Biophys. Chem. 10: 343.Google Scholar
  349. Rojas, E., 1965, Membrane potentials, resistance and ion permeability in squid giant axons injected or perfused with proteases, Proc. Natl. Acad. Sci. U.S.A. 53: 306.PubMedGoogle Scholar
  350. Rojas, E., and Atwater, I., 1967, Blocking of potassium currents by pronase in perfused giant axons, Nature (London) 215: 850.Google Scholar
  351. Rojas, E., and Atwater, I., 1968, An experimental approach to determine membrane charges in squid giant axons, J. Gen. Physiol. 51:131S.PubMedGoogle Scholar
  352. Rojas, E., and Canessa-Fischer, M., 1968, Sodium movements in perfused squid giant axons, J. Gen. Physiol. 52: 240.PubMedGoogle Scholar
  353. Rojas, E., and Hidalgo, C., 1968, Effect of temperature and metabolic inhibitors on Ca45 outflow from squid giant axons, Biochim. Biophys. Acta 163: 550.Google Scholar
  354. Rojas, E., and Keynes, R.D., 1975, On the relation between displacement currents and activation of the sodium conductance in the squid giant axon, Philos. Trans. R. Soc. London Ser. B 270: 459.Google Scholar
  355. Rojas, E., and Luxoro, M., 1963, Micro-injection of trypsin into axons of squid, Nature (London) 199: 78.Google Scholar
  356. Rojas, E., and Taylor, R.E., 1975, Simultaneous measurements of magnesium, calcium and sodium influxes in perfused giant axons under membrane potential control, J. Physiol. 252: 1.PubMedGoogle Scholar
  357. Rojas, E., Taylor, R.E., Atwater, I., and Bezanilla, F., 1969, Analysis of the effects of calcium or magnesium on voltage clamp currents in perfused squid axons bathed in solutions of high potassium, J. Gen. Physiol. 54: 532.PubMedGoogle Scholar
  358. Rosenberg, P., 1965, Effects of venoms on the squid giant axon, Toxicon 3: 125.PubMedGoogle Scholar
  359. Rosenberg, P., 1966, Use of venoms in studies on nerve excitation, Mem. Inst. Butantan, Sao Paulo 33 (2): 477.Google Scholar
  360. Rosenberg, P., 1970, Function of phospholipids in axons: Depletion of membrane phosphorus by treatment with phospholipase C, Toxicon 8: 235.Google Scholar
  361. Rosenberg, P., 1971, The use of snake venoms as pharmacological tools in studying nerve activity, in: Neuropoisons: Their Pathophysiological Actions, Vol. 1 ( L.L. Simpson, ed.), pp. 111–137, Plenum Press, New York.Google Scholar
  362. Rosenberg, P., 1973, The giant axon of the squid: A useful preparation for neurochemical and pharmacological studies, in: Methods of Neurochemistry, Vol. 4 ( R. Fried, ed.), pp. 97–160, Marcel Dekker, New York.Google Scholar
  363. Rosenberg, P., 1975, Penetration of phospholipase A2 and C into the squid (Loligo pealii) giant axon, Experientia 31: 1401.PubMedGoogle Scholar
  364. Rosenberg, P., 1976, Bacterial and snake venom phospholipases: Enzymatic probes in the study of structure and function in bioelectrically excitable tissues, in: Animal, Plant and Microbial Toxins, Vol. 2 ( A. Ohsaka, K. Hayashi, and Y. Sawai, eds.), pp. 229–261, Plenum Press, New York.Google Scholar
  365. Rosenberg, P., 1977, Pharmacology of phospholipase A2 from snake venoms, in: Handbook of Experimental Pharmacology, Vol. 52, Snake Venoms ( C.Y. Lee, ed.), pp. 403–447, Springer-Verlag, New York.Google Scholar
  366. Rosenberg, P., and Bartels, E., 1967, Drug effects on the spontaneous electrical activity of the squid giant axon, J. Pharmacol. Exp. Ther. 155: 532.PubMedGoogle Scholar
  367. Rosenberg, P., and Condrea, E., 1968, Maintenance of axonal conduction and membrane permeability in presence of extensive phospholipid splitting, Biochem. Pharmacol. 17: 2033.Google Scholar
  368. Rosenberg, P., and Dettbarn, W.-D., 1964, Increased cholinesterase activity of intact cells caused by snake venoms, Biochem. Pharmacol. 13: 1157.Google Scholar
  369. Rosenberg, P., and Dettbarn, W.-D., 1967, Use of venoms in testing for essentiality of cholinesterase in conduction, in: Animal Toxins ( Russell and Saunders, eds.), p. 379, Pergamon, New York.Google Scholar
  370. Rosenberg, P., and Ehrenpreis, S., 1961, Reversible block of axonal conduction by curare after treatment with cobra venom, Biochem. Pharmacol. 8: 192.Google Scholar
  371. Rosenberg, P., and Hoskin, F.C.G., 1963, Demonstration of increased permeability as a factor in the effect of acetylcholine on the electrical activity of venom-treated axons, J. Gen. Physiol. 46: 1065.PubMedGoogle Scholar
  372. Rosenberg, P., and Hoskin, F.C.G., 1965, Penetration of acetylcholine into squid giant axons, Biochem. Pharmacol. 14: 1765.Google Scholar
  373. Rosenberg, P., and Khairallah, E., 1974, Effect of phospholipases A and C on free amino acid content of the squid axon, J. Neurochem. 23: 55.PubMedGoogle Scholar
  374. Rosenberg, P., and Mautner, H.G., 1967, Acetylcholine receptor: Similarity in axons and junctions, Science 155: 1569.PubMedGoogle Scholar
  375. Rosenberg, P., and Ng, K.Y., 1963, Factors in venom leading to block of axonal conduction by curare, Biochim. Biophys. Acta 75: 116.Google Scholar
  376. Rosenberg, P., and Podleski, T.R., 1962, Block of conduction by acetylcholine and D-tubocurarine after treatment of squid axon with cottonmouth mocassin venom, J. Pharmacol. Exp. Ther. 137: 249.PubMedGoogle Scholar
  377. Rosenberg, P., and Podleski, T.R., 1963, Ability of venoms to render squid axons sensitive to curare and acetylcholine, Biochim. Biophys. Acta 75: 104.Google Scholar
  378. Rosenberg, P., Dettbarn, W.-D., and Brzin, M., 1966a, Acetylcholine and choline acetylase in squid giant axon, ganglia and retina, Nature (London) 210: 858.Google Scholar
  379. Rosenberg, P., Mautner, H.G., and Nachmansohn, D., 1966b, Similarity in effects of oxygen, sulfur and selenium isologs on the acetylcholine receptor in excitable membranes of junctions and axons, Proc. Natl. Acad. Sci. U.S.A. 55: 835.PubMedGoogle Scholar
  380. Rosenberg, P., Kremzner, L.T., McCreery, D., and Willette, R.E., 1972, Inhibition of choline acetyltransferase activity in squid giant axon, Biochim. Biophys. Acta 268: 49.Google Scholar
  381. Ruch, T.C., and Patton, H.D. (eds.), 1966, Physiology and Biophysics, W.B. Saunders, Philadelphia.Google Scholar
  382. Sabatini, M.T., Dipolo, R., and Villegas, R., 1968, Adenosine triphosphatase activity in the membranes of the squid nerve fibre, J. Cell Biol. 38: 176.PubMedGoogle Scholar
  383. Sato, H., Tasaki, I., Carbone, E., and Hallett, M., 1973. Changes in axon birefringence associated with excitation: Implications for the structure of the axon membrane, J. Mechanochem. Cell Motil. 2: 209.PubMedGoogle Scholar
  384. Schmitt, F.O., and Geschwind, N., 1957, The axon surface, Prog, Biophys. Biophys. Chem. 8: 165.Google Scholar
  385. Schwartz, E.A., 1968, Effect of diethyl ether on sodium efflux from squid axons, Curr. Mod. Biol. 2: 1.PubMedGoogle Scholar
  386. Scuka, M., 1971, Effects of histamine on resting and action potentials of squid giant axons, Life Sci. 10: 355.Google Scholar
  387. Segal, J.R., 1968a, Effect of metabolism on the excitability of the squid giant axon, Am. J. Physiol. 215: 467.PubMedGoogle Scholar
  388. Segal, J.R., 19686, Surface charge of giant axons of squid and lobster, Biophys. J. 8: 470.Google Scholar
  389. Sevcik, C., and Narahashi, T., 1975, Effects of proteolytic enzymes on ionic conductances of squid axon membranes, J. Membrane Biol. 24: 329.Google Scholar
  390. Seyama, I., and Narahashi, T., 1973, Increase in sodium permeability of squid axon membranes by a-dihydro-grayanotoxin II, J. Pharmacol. Exp. Ther. 184: 299.PubMedGoogle Scholar
  391. Shanes, A.M., 1952, The ultraviolet spectra and neurophysiological effects of “veratrine” alkaloids, J. Pharmacol. Exp. Ther. 105: 216.PubMedGoogle Scholar
  392. Shanes, A.M., Grundfest, H., and Freygang, W., 1953, Low level impedance changes following the spike in the giant axon before and after treatment with “veratrine” alkaloids, J. Gen. Physiol. 37: 39.PubMedGoogle Scholar
  393. Shapiro, B.I., Wang, C.M., and Narahashi, T., 1974, Effects of strychnine on ionic conductances of squid axon membrane, J. Pharmacol. Exp. Ther. 188: 66.PubMedGoogle Scholar
  394. Shaw, T.I., 1966, Cation movements in perfused giant axons, J. Physiol. 182: 209.PubMedGoogle Scholar
  395. Simon, E.J., and Rosenberg, P., 1970, Effects of narcotics on the giant axon of the squid, J. Neurochem. 17: 881.PubMedGoogle Scholar
  396. Singer, S.J., and Nicolson, G.L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175: 720.PubMedGoogle Scholar
  397. Sjodin, R.A., 1966, Long duration responses in squid giant axons injected with cesium sulfate solution, J. Gen. Physiol. 50: 269.PubMedGoogle Scholar
  398. Sjodin, R.A., and Beauge, L.A., 1967, The ion selectivity and concentration dependence of cation coupled active sodium transport in squid giant axons, Curr. Mod. Biol. 1: 105.PubMedGoogle Scholar
  399. Sjodin, R.A., and Beauge, L.A., 1968, Coupling and selectivity of sodium and potassium transport in squid giant axons, J. Gen. Physiol. 51: 152S.PubMedGoogle Scholar
  400. Sjodin, R.A., and Beauge, L.A., 1969, The influence of potassium- and sodium-free solutions on sodium efflux from squid giant axons, J. Gen. Physiol. 54: 664.PubMedGoogle Scholar
  401. Sjodin, R.A., and Mullins, L.J., 1967, Tracer and nontracer potassium fluxes in squid giant axons and the effects of changes in external potassium concentration and membrane potential, J. Gen. Physiol. 50: 533.PubMedGoogle Scholar
  402. Spyropoulos, C.S., 1960, Cytoplasmic pH of nerve fibers, J. Neurochem. 5: 185.PubMedGoogle Scholar
  403. Spyropoulos, C.S., 1965, The role of temperature, potassium and divalent ions in the current-voltage characteristics of nerve membranes, J. Gen. Physiol. 48: 49.PubMedGoogle Scholar
  404. Stallworthy, W.B., 1970, Electro-osmosis in squid axons, J. Mar. Biol. Assoc. U.K. 50: 349.Google Scholar
  405. Stallworthy, W.B., and Fensom, D.S., 1966, Electroosmosis in axons of freshly killed squid, Can. J. Physiol. Pharmacol. 44: 866.PubMedGoogle Scholar
  406. Steinbach, H.B., 1941, Chloride in the giant axons of the squid, J. Cell. Comp. Physiol. 17: 57.Google Scholar
  407. Steinbach, H.B., and Spiegelman, S., 1943, The sodium and potassium balance in squid nerve axoplasm, J. Cell. Comp. Physiol. 22: 187.Google Scholar
  408. Stillman, I.M., Binstock, L., and Taylor, R.E., 1968, Effect of D20 upon the neural activity of the squid giant axon, Fed. Proc. Fed. Am. Soc. Exp. Biol. 27: 703.Google Scholar
  409. Stillman, I.M., Gilbert, D.L., and Robbins, M., 1970, Monactin does not influence potassium permeability in the squid axonal membrane, Biochim. Biophys. Acta 203: 338.Google Scholar
  410. Summers, W.C., 1968, The growth and size distribution of current year class Loligo pealei, Biol. Bull. 135: 366.Google Scholar
  411. Summers, W.C., 1969, Winter population of Loligo pealei in the mid-Atlantic bight, Biol Bull. 137: 202.Google Scholar
  412. Summers, W.C., 1971, Age and growth of Loligo pealii, a population study of the common Atlantic coast squid, Biol Bull. 141: 189.Google Scholar
  413. Summers, W.C., and McMahon, J.J., 1970, Survival of unfed squid, Loligo pealei, in an aquarium, Biol. Bull. 138: 389.Google Scholar
  414. Summers, W.C., and McMahon, J.J., 1974, Studies on the maintenance of adult squid (Loligo pealei). I. Factorial survey, Biol. Bull. 146: 279.Google Scholar
  415. Summers, W.C., McMahon, J.J., and Ruppert, G.N.P.A., 1974, Studies on the maintenance of adult squid (Loligo pealei). II. Empirical extensions, Biol. Bull. 146: 291.Google Scholar
  416. Takashima, S., and Schwan, H.P., 1974, Passive electrical properties of squid axon membrane, J. Membrane Biol. 17: 51.Google Scholar
  417. Takashima, S., Yantorno, R., and Pal, N.C., 1975, Electrical properties of squid axon membrane. II. Effect of partial degradation by phospholipase A and pronase on electrical characteristics, Biochim. Biophys. Acta 401: 15.Google Scholar
  418. Takenaka, T., and Yamagishi, 1969, Morphology and electrophysiological properties of squid giant axons perfused intracellularly with protease solution, J. Gen. Physiol. 53: 81.PubMedGoogle Scholar
  419. Takenaka, T., Hirakow, R., and Yamagishi, S., 1968, Ultrastructural examination of the squid giant axons perfused intracellularly with protease, J. Ultrastruct. Res. 25: 408.PubMedGoogle Scholar
  420. Tasaki, I., 1963, Permeability of squid axon membrane to various ions, J. Gen. Physiol. 46: 755.PubMedGoogle Scholar
  421. Tasaki, I., 1968, Nerve Excitation, Charles C. Thomas, Springfield, Illinois.Google Scholar
  422. Tasaki, I., 1970, Effects of ultraviolet and visible light on nerve fibers and changes in optical properties during nervous activity, Adv. Biol. Med. Phys. 13: 307.PubMedGoogle Scholar
  423. Tasaki, I., 1975, Evolution of theories of nerve excitation, in: The Nervous System, Vol. 1, The Basic Neurosciences ( D.B. Tower, ed.), pp. 177–195, Raven Press, New York.Google Scholar
  424. Tasaki, I., and Hagiwara, S., 1957, Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride, J. Gen. Physiol. 40: 859.PubMedGoogle Scholar
  425. Tasaki, I., and Luxoro, M., 1964, Intracellular perfusion of Chilean giant squid axons, Science 145: 1313.PubMedGoogle Scholar
  426. Tasaki, I., and Shimamura, M., 1962, Further observations on resting and action potential of intracellularly perfused squid axon, Proc. Natl. Acad. Sci. U.S.A. 48: 1571.Google Scholar
  427. Tasaki, I., and Singer, I., 1966, Membrane macromolecules and nerve excitability: A physicochemical interpretation of excitation in squid giant axons, Ann. N. Y. Acad. Sci. 137: 792.PubMedGoogle Scholar
  428. Tasaki, I., and Sisco, K., 1975, Electrophysiological and optical methods for studying the excitability of the nerve membrane, in: Methods in Membrane Biology, Vol. 5 (E.D. Korn, ed.) Chapt. 4, pp. 163–194, Plenum Press, New York.Google Scholar
  429. Tasaki, I., and Spyropoulos, C.S., 1961, Permeability of the squid axon membrane to several organic molecules, Am. J. Physiol 201: 413.PubMedGoogle Scholar
  430. Tasaki, I., and Takenaka, T., 1963, Resting and action potential of squid giant axons intracellularly perfused with sodium-rich solutions, Proc. Natl. Acad. Sci. U.S.A. 50: 619.PubMedGoogle Scholar
  431. Tasaki, I., and Takenaka, T., 1964, Effects of various potassium salts and proteases upon excitability of intracellularly perfused squid giant axons, Proc. Natl. Acad. Sci. U.S.A. 52: 804.PubMedGoogle Scholar
  432. Tasaki, I., Teorell, T., and Spyropoulos, C.S., 1961, Movement of radioactive tracers across squid axon membrane, Am. J. Physiol. 200: 11.PubMedGoogle Scholar
  433. Tasaki, I., Watanabe, A., and Takenaka, T., 1962, Resting and action potentials of intracellularly perfused squid giant axon, Proc. Natl. Acad. Sci. U.S.A. 48: 1177.Google Scholar
  434. Tasaki, I., Luxoro, M., and Ruarte, A., 1965a, Electrophysiological studies of Chilean squid axons under internal perfusion with sodium-rich media, Science 150: 899.PubMedGoogle Scholar
  435. Tasaki, I., Singer, I., and Takenaka, T., 1965b, Effects of internal and external ionic environment on excitability of squid giant axon—A macromolecular approach, J. Gen. Physiol. 48: 1095.PubMedGoogle Scholar
  436. Tasaki, I., Singer, I., and Watanabe, A., 1965c, Excitation of internally perfused squid giant axons in sodium-free media, Proc. Natl. Acad. Sci. U.S.A. 54: 763.PubMedGoogle Scholar
  437. Tasaki, I., Watanabe, A., and Singer, I., 1966a, Excitability of squid giant axons in the absence of univalent cations in the external medium, Proc. Natl. Acad. Sci. U.S.A. 56: 1116.PubMedGoogle Scholar
  438. Tasaki, I., Singer, I., and Watanabe, A., 19666, Excitation of squid giant axons in sodium-free external media, Am. J. Physiol. 211: 746.Google Scholar
  439. Tasaki, I., Singer, I., and Watanabe, A., 1967a, Cation interdiffusion in squid giant axons, J. Gen. Physiol. 50: 989.PubMedGoogle Scholar
  440. Tasaki, I., Watanabe, A., and Lerman, R., 1967b, Role of divalent cations in excitation of squid giant axons, Am. J. Physiol. 213: 1465.PubMedGoogle Scholar
  441. Tasaki, I., Takenaka, T., and Yamagishi, S., 1968a, Abrupt depolarization and bi-ionic action potentials in internally perfused squid giant axons, Am. J. Physiol. 215: 152.PubMedGoogle Scholar
  442. Tasaki, I., Watanabe, A., Sandlin, R., and Camay, L., 19686, Changes in fluorescence, turbidity, and birefringence associated with nerve excitation, Proc. Natl. Acad. Sci. U.S.A. 61: 883.Google Scholar
  443. Tasaki, I., Lerman, L., and Watanabe, A., 1969a, Analysis of excitation process in squid giant axons under bi-ionic conditions, Am. J. Physiol. 216: 130.PubMedGoogle Scholar
  444. Tasaki, I., Camay, L., Sandlin, R., and Watanabe, A., 19696, Fluorescence changes during conduction in nerves stained with acridine orange, Science 163: 683.Google Scholar
  445. Tasaki, I., Camay, L., and Watanabe, A., 1969c, Transient changes in extrinsic fluorescence of nerve produced by electrical stimulation, Proc. Natl. Acad. Sci. U.S.A. 64: 1362.PubMedGoogle Scholar
  446. Tasaki, I., Watanabe, A., and Hallett, M., 1971, Properties of squid axon membrane as revealed by a hydrophobic probe, 2-p-Koluidinylnaphthalene-6-sulfonate, Proc. Natl. Acad. Sci. U.S.A. 68: 938.PubMedGoogle Scholar
  447. Tasaki, I., Watanabe, A., and Hallett, M., 1972, Fluorescence of squid axon membrane labeled with hydrophobic probes, J. Membrane Biol. 8: 109.Google Scholar
  448. Tasaki, I., Hallett, M., and Carbone, E., 1973a, Further studies of nerve membranes labeled with fluorescent probes, J. Membrane Biol. 11: 353.Google Scholar
  449. Tasaki, I., Carbone, E., Sisco, K., and Singer, I., 19736, Spectral analysis of extrinsic fluorescence of the nerve membrane labeled with aminonaphthalene derivatives, Biochim. Biophys. Acta 323: 220.Google Scholar
  450. Tasaki, I., Sisco, K., and Warashima, A., 1974, Alignment of anilinonaphthalene-sulfonate and related fluorescent probe molecules in squid axon membrane and in synthetic polymers, Biophys. Chem. 2: 316.Google Scholar
  451. Tasaki, I., Warashima, A., and Pant, H., 1976, Studies of light emission, absorption and energy transfer in nerve membranes labeled with fluorescent probes, Biophys. Chem. 4: 1.Google Scholar
  452. Taylor, R.E., 1959, Effect of procaine on electrical properties of squid axon membranes, Am. J. Physiol. 196: 1071.PubMedGoogle Scholar
  453. Ulbricht, W., 1974, Ionic channels through the axon membrane (a review), Biophys. Struct. Mech. 1: 1.Google Scholar
  454. Van Breemen, C., and DeWeer, P., 1970, Lanthanum inhibition of 45Ca efflux from the squid giant axon, Nature (London) 226: 760.Google Scholar
  455. Van Den Bercken, J., and Narahashi, T., 1974, Effects of aldrin-transdiol, a metabolite of the insecticide dieldrin, on nerve membrane, Eur. J. Pharmacol. 27: 255.PubMedGoogle Scholar
  456. Vanderkooi, G., and Green, D.E., 1970, Biological membrane structure. 1. The protein crystal model for membranes, Proc. Natl. Acad Sci. U.S.A. 66: 615.PubMedGoogle Scholar
  457. Vargas, F.F., 1968, Water flux and electrokinetic phenomena in the squid axon, J. Gen. Physiol. 51: 123S.PubMedGoogle Scholar
  458. Villegas, G.M., 1969, Electron microscopy of the giant nerve fiber of the giant squid Dosidicus gigas, J. Ultrastruct. Res. 26: 501.PubMedGoogle Scholar
  459. Villegas, G., 1975, Effects of cholinergic compounds on the axon—Schwann cell relationship in the squid nerve fiber, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34: 1370.Google Scholar
  460. Villegas, G.M., and Villegas, R., 1960, The ultrastructure of the giant nerve fibre of the squid axon—Schwann cell relationship, J. Ultrastruct. Res. 3: 362.PubMedGoogle Scholar
  461. Villegas, G.M., and Villegas, R., 1963, Morphogenesis of the Schwann channels in the squid nerve, J. Ultrastruct. Res. 8: 197.PubMedGoogle Scholar
  462. Villegas, G.M., and Villegas, R., 1968, Ultrastructural studies on the squid nerve fibers, J. Gen. Physiol. 51: 44S.PubMedGoogle Scholar
  463. Villegas, G.M., and Villegas, J., 1974, Acetylcholinesterase localization in the giant nerve fiber of the squid, J. Ultrastruct. Res. 46: 149.PubMedGoogle Scholar
  464. Villegas, G.M., and Villegas, J., 1976, Structural complexes in the squid giant axon membrane sensitive to ionic concentrations and cardiac glycosides, J. Cell. Biol. 69: 19.PubMedGoogle Scholar
  465. Villegas, G., Villegas, L., and Villegas, R., 1965, Sodium, potassium and chloride concentrations in the Schwann cell and axon of the squid nerve fiber, J. Gen. Physiol. 49: 1.PubMedGoogle Scholar
  466. Villegas, J., 1968, Transport of electrolytes in the Schwann cell and location of sodium by electron microscopy, J. Gen. Physiol. 51:61S.PubMedGoogle Scholar
  467. Villegas, J., 1972, Axon-Schwann cell interactions in the squid nerve fibre, J. Physiol 225: 275.PubMedGoogle Scholar
  468. Villegas, J., 1973, Effects of tubocurarine and eserine on the axon-Schwann cell relationship in the squid nerve fibre, J. Physiol. 232: 193.PubMedGoogle Scholar
  469. Villegas, J., 1974, Effects of acetylcholine and carbamylcholine on the axon and Schwann cell electrical potentials in the squid nerve fibre, J. Physiol. 242: 647.PubMedGoogle Scholar
  470. Villegas, J., 1975, Characterization of acetylcholine receptors in the Schwann cell membrane of the squid nerve fibre, J. Physiol. 249: 679.PubMedGoogle Scholar
  471. Villegas, J., Villegas, R., and Gimenez, M., 1968, Nature of the Schwann cell electrical potential: Effect of ions and a cardiac glycoside, J. Gen. Physiol. 51: 47.PubMedGoogle Scholar
  472. Villegas, J., Sevcik, C., Barnola, F.V., and Villegas, R., 1976, Grayanotoxin, veratrine, and tetrodotoxin-sensitive sodium pathways in the Schwann cell membrane of squid nerve fibers, J. Gen. Physiol. 67: 369.PubMedGoogle Scholar
  473. Villegas, R., and Barnola, F.V., 1960, Equivalent pore radius in the axolemma of the giant axon of the squid, Nature (London) 188: 762.Google Scholar
  474. Villegas, R., and Barnola, F.V., 1961, Characterization of the resting axolemma in the giant axon of the squid, J. Gen. Physiol. 44: 963.PubMedGoogle Scholar
  475. Villegas, R., and Barnola, F.V., 1972, Ionic channels and nerve membrane constituents: Tetrodotoxin-like interaction of saxitoxin with cholesterol monolayers, J. Gen. Physiol. 59: 33.PubMedGoogle Scholar
  476. Villegas, R., and Camejo, G., 1968, Tetrodotoxin interaction with squid nerve membrane lipids, Biochim. Biophys. Acta 163: 421.Google Scholar
  477. Villegas, R., and Villegas, G.M., 1960, Characterization of membranes in the giant nerve fiber of the squid, J. Gen. Physiol. 43: 73.PubMedGoogle Scholar
  478. Villegas, R., Gimenez, M., and Villegas, L., 1962, The Schwann-cell electrical potential in the squid nerve, Biochim. Biophys. Acta 62: 610.Google Scholar
  479. Villegas, R., Villegas, L., Gimenez, M., and Villegas, G.M., 1963, Schwann cell and axon electrical potential difference: Squid nerve structure and excitable membrane location, J. Gen. Physiol. 46: 1047.PubMedGoogle Scholar
  480. Villegas, R., Blei, M., and Villegas, G.M., 1965a, Penetration of non-electrolyte molecules in resting and stimulated squid nerve fibers, J. Gen. Physiol. 48: 35.PubMedGoogle Scholar
  481. Villegas, R., Herrera, F.C., Villegas, G.M., and Blei, M., 19656, Sodium influx and non-electrolyte penetration in stimulated squid axons, J. Cell. Comp. Physiol. 66: 155.Google Scholar
  482. Villegas, R., Villegas, G.M., Blei, M., Herrera, F.C., and Villegas, J., 1966, Nonelectrolyte penetration and sodium fluxes through the axolemma of resting and stimulated medium sized axons of the squid Doryteuthis plei, J. Gen. Physiol. 50: 43.PubMedGoogle Scholar
  483. Villegas, R., Bruzual, I.B., and Villegas, G.M., 1968, Equivalent pore radius of the axolemma of resting and stimulated squid axons, J. Gen. Physiol 51:8IS.Google Scholar
  484. Villegas, R.F., Barnola, V., and Camejo, G., 1970, Ionic channels and nerve membrane lipids: Cholesterol-tetrodotoxin interaction, J. Gen. Physiol. 55: 548.PubMedGoogle Scholar
  485. Villegas, R., Villegas, G.M., DiPolo, R., and Villegas, J., 1971, Nonelectrolyte permeability, sodium influx, electrical potentials, and axolemma ultrastructure in squid axons of various diameters, J. Gen. Physiol. 57: 623.PubMedGoogle Scholar
  486. Von Muralt, A., 1975, The optical spike, Philos. Trans. R. Soc. London Ser. B 270: 411.Google Scholar
  487. Wang, C.M., Narahashi, T., and Scuka, M., 1972, Mechanism of negative temperature coefficient of nerve blocking action of allethrin, J. Pharmacol. Exp. Ther. 182: 442.PubMedGoogle Scholar
  488. Watanabe, A., Tasaki, I., Singer, I., and Lerman, L., 1967a, Effect of tetrodotoxin on excitability of squid giant axons in sodium-free media, Science 155: 95.PubMedGoogle Scholar
  489. Watanabe, A., Tasaki, I., and Lerman, L., 19676, Bi-ionic action potentials in squid giant axons internally perfused with sodium salts, Proc. Natl. Acad. Sci. U.S.A. 58: 2246.Google Scholar
  490. Webb, G.D., Dettbarn, W.-D., and Brzin, M., 1966, Biochemical and pharmacological aspects of the synapses of the squid stellate ganglion, Biochem. Pharmacol. 15: 1813.Google Scholar
  491. White-Ortiz, A., 1967, Metabolismo de RNA en azones de Dosidicus gigas, An. Fac. Quim. Farm. Univ. Chile 19: 138.Google Scholar
  492. Williams, L.W., 1909, The Anatomy of the Common Squid Loligo pealii, Lesueur, E.J. Brill, Leiden.Google Scholar
  493. Witman, G., and Rosenbaum, J., 1973, Filamentous components of isolated squid axoplasm, Biol. Bull. 145: 460.Google Scholar
  494. Woodbury, J.W., 1965, Biophysics of the cell membrane (Chapt. 1) and Nerve and muscle (Chapt. 2), in: Physiology and Biophysics ( T.C. Ruch and H.D. Patton, eds.), pp. 1–72, W.B. Saunders, Philadelphia.Google Scholar
  495. Wu, C.H., and Narahashi, T., 1973, Mechanism of action of propranolol on squid axon membranes, J. Pharmacol. Exp. Ther. 184: 155.PubMedGoogle Scholar
  496. Wu, C.H., and Narahashi, T., 1976, Actions of trihexyphenidyl and benztropine on squid axon membranes, J. Pharmacol. Exp. Ther. 197: 135.PubMedGoogle Scholar
  497. Yeh, J.Z., and Narahashi, T., 1974a, Effects of lobeline on ionic conductances of squid axon membranes, Fed. Proc. Fed. Am. Soc. Exp. Biol. 33: 272.Google Scholar
  498. Yeh, J.Z., and Narahashi, T., 1974b, Noncholinergic mechanism of action of cholinergic drugs on squid axon membranes, J. Pharmacol. Exp. Ther. 189: 697.PubMedGoogle Scholar
  499. Yeh, J.Z., and Narahashi, T., 1976, Mechanism of action of quinidine on squid axon membranes, J. Pharmacol. Exp. Ther. 196: 62.PubMedGoogle Scholar
  500. Yeh, J.Z., Takeno, K., Rosen, G.M., and Narahashi, T., 1975, Ionic mechanism of action of a spin-labeled local anesthetic on squid axon membranes, J. Membrane Biol. 25: 237.Google Scholar
  501. Yeh, J.Z., Oxford, G.S., Wu, C.H., and Narahashi, T., 1976, Interactions of aminopyridines with potassium channels of squid axon membranes, Biophys. J. 16: 77.PubMedGoogle Scholar
  502. Young, J.Z., 1936a, The structure of nerve fibers in cephalopods and crustacea, Proc. R. Soc. London Ser. B 121: 319.Google Scholar
  503. Young, J.Z., 1936b, The giant nerve fibers and epistellar body of cephalopods, Q.J. Microsc. Sci. 78: 367.Google Scholar
  504. Young, J.Z., 1939, Fused neurons and synaptic contacts in the giant nerve fibers of cephalopods, Philos. Trans. R. Soc. London Ser. B 229: 465.Google Scholar
  505. Young, J.Z., 1952, Doubt and Certainty in Science, Oxford University Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Philip Rosenberg
    • 1
  1. 1.Section of Pharmacology and ToxicologyUniversity of Connecticut School of PharmacyStorrsUSA

Personalised recommendations