Electrophysiological Properties of Developing Skeletal Muscle Cells in Culture

  • Yoshiaki Kidokoro


Various electrophysiological properties of skeletal muscles have been extensively studied in adult vertebrates (Hodgkin and Horowicz, 1959; Nakajima et al., 1962; Adrian et al., 1970; Campbell and Hille, 1976; Campbell, 1976; Beaty and Stefani, 1975; Sanchez and Stefani, 1978). Characteristics of ion channels activated by a transmitter, acetylcholine, have also been the subject of exhaustive studies (Katz and Miledi, 1972; Anderson and Stevens, 1973; Neher and Sakmann, 1976; Takeuchi and Takeuchi, 1960; Maeno et al., 1977). All of these distinct membrane properties may be regulated by and expressed through large protein molecules that reside in the lipid bilayer of the sarcolemma (Singer and Nicholson, 1972). These molecules may be inserted into the membrane de novo or may be activated during membrane differentiation at certain developmental stages.


Skeletal Muscle Cell Rest Membrane Potential Adult Skeletal Muscle Multinucleate Myotubes Primary Myoblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, R. H., Chandler, W. K., and Hodgkin, A. L., 1970, Slow changes in potassium permeability in skeletal muscle, J. Physiol. (Lond.) 208:645.Google Scholar
  2. Albuquerque, E. X., and Thesleff, S., 1968, A comparative study of membrane properties of innervated and chronically denervated fast and slow skeletal muscles of the rat, Acta. Physiol. Scand. 73:471.PubMedGoogle Scholar
  3. Anderson, C. R., and Stevens, C. F., 1973, Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction, J. Physiol. (Lond.) 235:655.Google Scholar
  4. Baccaglini, P., 1978, Action potentials of embryonic dorsal root ganglion neurones in Xenopus tadpoles, J. Physiol. (Lond.) 283:585.Google Scholar
  5. Beaty, G. N., and Stefani, E., 1975, Inward calcium current in twitch muscle fibers in the frog, J. Physiol. (Lond.) 260:27P.Google Scholar
  6. Bryant, S. H., and Morales-Aguilera, A., 1971, Chloride conductance in normal and myotonic muscle fibers and the action of monocarboxylic aromatic acids, J. Physiol. (Lond.) 219:367.Google Scholar
  7. Camerino, D., and Bryant, S. H., 1976, Effects of denervation and colchicine treatment on the chloride conductance of rat skeletal muscle fibers, J. Neurobiol. 7:221.PubMedCrossRefGoogle Scholar
  8. Campbell, D. T., 1976, Ionic selectivity of the sodium channel of frog skeletal muscle, J. Gen. Physiol. 67:295.PubMedCrossRefGoogle Scholar
  9. Campbell, D. T., and Hille, B., 1976, Kinetic and pharmacological properties of the sodium channel of frog skeletal muscle, J. Gen. Physiol. 67:309.PubMedCrossRefGoogle Scholar
  10. Christian, C. N., Nelson, P. G., Peacock, J., and Nirenberg, M., 1977, Synapse formation between two clonal cell lines, Science 196:995.PubMedCrossRefGoogle Scholar
  11. Cole, K. S., and Curtis, J. H., 1950, Bioelectricity: Electric physiology, in: Medical Physics, Vol. 2 (O. Glaser, ed.), p. 82, Year Book Publishers, Chicago.Google Scholar
  12. Dryden, W. F., Erulkar, S. D., and de la Haba, G., 1974, Properties of the cell membrane of developing skeletal muscle fibers in culture and its sensitivity to acetylcholine, Clin. Exp. Pharmacol. Physiol. 1:369.CrossRefGoogle Scholar
  13. Engelhardt, J. K., Ishikawa, K., Lisbin, S. J., and Mori, J., 1976, Neurotrophic effects on passive electrical properties of cultured chick skeletal muscle, Brain Res. 110:170.PubMedCrossRefGoogle Scholar
  14. Englehardt, J. K., Ishikawa, K., Mori, J., and Schimabukuro, Y., 1977a, Passive electrical properties of cultured chick skeletal muscle: Neurotrophic effect on sample distribution, Brain Res. 126:172.CrossRefGoogle Scholar
  15. Engelhardt, J. K., Ishikawa, K., Mori, J., and Shimabukuro, Y., 1977b, Neurotrophic effects on the electrical properties of cultured muscle produced by conditioned medium from spinal cord explants, Brain Res. 128:243.PubMedCrossRefGoogle Scholar
  16. Engelhardt, J. K., Ishikawa, K., and Shimabukuro, Y., 1978, Neurotrophic regulation of chloride conductance in cultured chick skeletal muscle, Soc. Neurosci. Abstr. 4:603.Google Scholar
  17. Ezerman, E. B., and Ishikawa, H., 1967, Differentiation of the sarcoplasmic reticulum and T system in developing chick skeletal muscle in vitro, J. Cell Biol. 25:405.CrossRefGoogle Scholar
  18. Fambrough, D., and Rash, J. E., 1971, Development of acetylcholine sensitivity during myogenesis, Dev. Biol. 26:55.PubMedCrossRefGoogle Scholar
  19. Fischbach, G. D., Nameroff, M., and Nelson, P. G., 1971, Electrical properties of chick skeletal muscle fibers developing in cell culture, J. Cell Physiol. 78:289.PubMedCrossRefGoogle Scholar
  20. Fischman, D. A., 1972, Development of striated muscle, in: The Structure and Function of Muscle, Vol. 1 (G. H. Bourne, ed.), 2nd ed., pp. 75–148, Academic Press, New York and London.Google Scholar
  21. Frankenheuser, B., and Hodgkin, A. L., 1957, The action of calcium on the electrical properties of squid axons, J. Physiol. (Lond.) 137:217.Google Scholar
  22. Fukuda, J., 1974, Chloride spike: A third type of action potential in tissue-cultured skeletal muscle cells from the chick, Science 185:76.PubMedCrossRefGoogle Scholar
  23. Fukuda, J., 1975, Voltage clamp study on inward chloride currents of spherical muscle cells in tissue culture, Nature 257:408.CrossRefGoogle Scholar
  24. Fukuda, J., Fischbach, G. D., and Smith, T. G., Jr., 1976a, A voltage clamp study of the sodium, calcium and chloride spikes of chick skeletal muscle cells grown in tissue culture, Dev. Biol. 49:412.PubMedCrossRefGoogle Scholar
  25. Fukuda, J., Henkart, M. P., Fischbach, G. D., and Smith, T. G., Jr., 1976b, Physiological and structural properties of colchicine-treated chick skeletal muscle cells grown in tissue culture, Dev. Biol. 49:395.PubMedCrossRefGoogle Scholar
  26. Gage, P. W., and Eisenberg, R. S., 1969, Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers, J. Gen. Physiol. 53:265.PubMedCrossRefGoogle Scholar
  27. Harris, A. J., Heinemann, S., Schubert, D., and Tarikas, H., 1971, Trophic interaction between cloned tissue culture lines of nerve and muscle, Nature 231:296.PubMedCrossRefGoogle Scholar
  28. Harris, J. B., and Marshall, M. W., 1973, Tetrodotoxin resistant action potentials in newborn rat muscle, Nature [New Biol.] 243:191.Google Scholar
  29. Harris, J. B., and Thesleff, S., 1971, Studies on tetrodotoxin resistant action potentials in denervated skeletal muscle, Acta Physiol. Scand. 83:382.PubMedCrossRefGoogle Scholar
  30. Harris, J. B., Marshall, M. W., and Wilson, P., 1973, A physiological study of chick myotubes grown in tissue culture, J. Physiol. (Lond.) 229:751.Google Scholar
  31. Hasegawa, S., and Kuromi, H., 1977, Effects of spinal cord and other tissue extracts on resting and action potentials of organ-cultured mouse skeletal muscle, Brain Res. 119:133.PubMedCrossRefGoogle Scholar
  32. Hille, B., 1972, The permeability of the sodium channel to metal cations in myelinated nerve, J. Gen. Physiol. 59:637.PubMedCrossRefGoogle Scholar
  33. Hodgkin, A. L., and Horowicz, P., 1959, The influence of potassium and chloride ions on the membrane potential of single muscle fibers, J. Physiol. (Lond.) 148:127.Google Scholar
  34. Hodgkin, A. L., and Huxley, A. F., 1952, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo, J. Physiol. (Lond.) 116:497.Google Scholar
  35. Huang, L. M., Catterall, W. A., and Ehrenstein, G., 1978, Selectivity of cations and nonelectrolytes for acetylcholine-activated channels in cultured muscle cells, J. Gen. Physiol. 71: 397.PubMedCrossRefGoogle Scholar
  36. Hutter, O. F., and Warner, A. E., 1967, The pH sensitivity of the cloride conductance of frog skeletal muscle, J. Physiol. (Lond.) 189:403.Google Scholar
  37. Kano, M., 1975a, Development of excitability in cultured skeletal muscle cells, Adv. Neurol. Sci. 20:1065.Google Scholar
  38. Kano, M., 1975b, Development of excitability in embryonic chick skeletal muscle cells, J. Cell. Physiol. 86:503.PubMedCrossRefGoogle Scholar
  39. Kano, M., and Shimada, Y., 1971a, Innervation of skeletal muscle cells differentiated in vitro from chick embryo, Brain Res. 27:402.PubMedCrossRefGoogle Scholar
  40. Kano, M., and Shimada, Y., 1971b, Innervation and acetylcholine sensitivity of skeletal muscle cells differentated in vitro from chick embryo, J. Cell. Physiol. 78:233.PubMedCrossRefGoogle Scholar
  41. Kano, M., and Shimada, Y., 1973, Tetrodotoxin-resistant electric activity in chick skeletal muscle cells differentated in vitro, J. Cell. Physiol. 81:85.PubMedCrossRefGoogle Scholar
  42. Kano, M., Shimada, Y., and Ishikawa, K., 1972, Electrogenesis of embryonic chick skeletal muscle cells differentiated in vitro, J. Cell. Physiol. 79:363.PubMedCrossRefGoogle Scholar
  43. Katz, B., and Miledi, R., 1972, The statistical nature of the acetylcholine potential and its molecular components, J. Physiol. (Lond.) 224:665.Google Scholar
  44. Kidokoro, Y., 1973, Development of action potentials in a clonal rat skeletal muscle cell line, Nature [New Biol.] 241:158.Google Scholar
  45. Kidokoro, Y., 1975a, Developmental changes of membrane electrical properties in a rat skeletal muscle cell line, J. Physiol. (Lond.) 244:129.Google Scholar
  46. Kidokoro, Y., 1975b, Sodium and calcium components of the action potential in a developing skeletal muscle cell line, J. Physiol. (Lond.) 244:145.Google Scholar
  47. Kidokoro, Y., 1980, Developmental changes of spontaneous synaptic potential properties in the rat neuromuscular contact formed in culture, Dev. Biol. 78:231.PubMedCrossRefGoogle Scholar
  48. Kidokoro, Y., Heinemann, S., Schubert, D., Brandt, B. L., and Klier, F. G., 1975, Synapse formation and neurotrophic effect on muscle cell lines, Cold Spring Harbor Symp. Quant. Biol. XL:373.Google Scholar
  49. Kimes, B. W., and Brandt, B. L., 1975, Properties of a clonal muscle cell line from rat heart, Exp. Cell Res. 98:367.CrossRefGoogle Scholar
  50. Kuromi, H., and Hasegawa, S., 1975, Neurotrophic effect of spinal cord extract on membrane potentials of organ-cultured mouse skeletal muscle, Brain Res. 100:178.PubMedCrossRefGoogle Scholar
  51. Land, B. R., Sastre, A., and Podleski, T. R., 1973, Tetrodotoxin-sensitive and-insensitive action potentials in myotubes, J. Cell. Physiol. 82:497.PubMedCrossRefGoogle Scholar
  52. Maeno, T., Edwards, C., and Anraku, M., 1977, Permeability of the endplate activated by acetylcholine to some organic cations, J. Neurobiol. 8:173.PubMedCrossRefGoogle Scholar
  53. Miyazaki, S., Takahashi, K., and Tsuda, K., 1972, Calcium and sodium contributions to regenerative responses in the embryonic excitable cell membrane, Science 176:1441.PubMedCrossRefGoogle Scholar
  54. Nakajima, S., Iwasaki, S., and Obata, K., 1962, Delayed rectification and anomalous rectification in frog’s skeletal muscle membrane, J. Gen. Physiol. 46:97.PubMedCrossRefGoogle Scholar
  55. Neher, E., and Sakmann, B., 1976, Noise analysis of drug induced voltage clamp currents in denervated frog muscle fibers, J. Physiol. (Lond.) 258:705.Google Scholar
  56. Obata, K., 1974, Transmitter sensitivities of some nerve and muscle cells in culture, Brain Res. 73:71.PubMedCrossRefGoogle Scholar
  57. Ohta, M., Narahashi, T., and Keeler, R. F., 1973, Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons, J. Pharmacol. Exp. Ther. 184:143.Google Scholar
  58. Palade, P. T., and Barchi, R. L., 1977, Characteristics of the chloride conductance in muscle fibers of the rat diaphragm, J. Gen. Physiol. 69:325.PubMedCrossRefGoogle Scholar
  59. Powell, J. A., and Fambrough, D. M., 1973, Electrical properties of normal and dysgenic mouse skeletal muscle in culture, J. Cell. Physiol. 82:21.PubMedCrossRefGoogle Scholar
  60. Redfern, P., and Thesleff, S., 1971, Action potential generation in denervated rat skeletal muscle. II. The action of tetrodotoxin, Acta Physiol. Scand. 82:70.PubMedCrossRefGoogle Scholar
  61. Ritchie, A. K., and Fambrough, D. M., 1975, Electrophysiological properties of the membrane and acetylcholine receptor in developing rat and chick myotubes, J. Gen. Physiol. 66:327.PubMedCrossRefGoogle Scholar
  62. Sanchez, J. A., and Stefani, D., 1978, Inward calcium current in twitch muscle fibres of the frog, J. Physiol. (Lond.) 283:197.Google Scholar
  63. Sastre, A., and Podleski, T. R., 1976, Pharmacologic characterization of the Na+ ionophores in L6 myotubes, Proc. Natl. Acad. Sci. USA 73:1355.PubMedCrossRefGoogle Scholar
  64. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720.PubMedCrossRefGoogle Scholar
  65. Spector, I., and Prives, J. M. 1977, Development of electrophysiological and biochemical membrane properties during differentiation of embryonic skeletal muscle in culture, Proc. Natl. Acad. Sci. USA 74:5166.PubMedCrossRefGoogle Scholar
  66. Spitzer, N. C., 1979, Ion channels in development, Annu. Rev. Neurosci. 2:363.PubMedCrossRefGoogle Scholar
  67. Spitzer, N. C., and Baccaglini, P. I., 1976, Development of the action potential in embryonic amphibian neurons in vivo, Brain Res. 107:610.PubMedCrossRefGoogle Scholar
  68. Spitzer, N. C., and Lamborghini, J. E., 1976, The development of the action potential mechanism of amphibian neurons isolated in culture. Proc. Natl. Acad. Sci. USA 73:1641.PubMedCrossRefGoogle Scholar
  69. Stallcup, W. B., and Cohn, M., 1976, Electrical properties of a clonal cell line as determined by measurement of ion fluxes, Exp. Cell Res. 98:277.PubMedCrossRefGoogle Scholar
  70. Steinbach, J. H., 1975, Acetylcholine responses on clonal myogenic cells in vitro, J. Physiol. (Lond.) 247:393.Google Scholar
  71. Steinbach, J. H., Harris, A. J., Patrick, J., Schubert, D., and Heinemann, S., 1973, Nerve-muscle interaction in vitro. Role of acetylcholine, J. Gen. Physiol. 62:255.PubMedCrossRefGoogle Scholar
  72. Takahashi, K., Miyazaki, S., and Kidokoro, Y., 1971, Development of excitability in embryonic muscle cell membranes in certain tunicates, Science 171:415.PubMedCrossRefGoogle Scholar
  73. Takeuchi, A., and Takeuchi, N., 1960, On the permeability of end-plate membrane during the action of transmitter, J. Physiol. (Lond.) 154:52.Google Scholar
  74. Vale, W., and Grant, G., 1975, In vitro pituitary hormone assay for hypophysiotropic substances, in: Methods in Enzymology, Vol. 37, Hormone Action, Part B, Peptide Hormones (B. W. O’Malley and J. G. Hardman, eds.), pp. 80–83, Academic Press, Oxford.Google Scholar
  75. Vogt, M., and Dulbecco, R., 1963, Steps in the neoplastic transformation of hamster embryo cells by polyoma virus, Proc. Natl. Acad. Sci. USA 49:171.PubMedCrossRefGoogle Scholar
  76. Yaffe, D., 1968, Retention of differentiation of potentialities during prolonged cultivation of myogenic cells, Proc. Natl. Acad. Sci. USA 61:477.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Yoshiaki Kidokoro
    • 1
  1. 1.The Salk InstituteSan DiegoUSA

Personalised recommendations