Advertisement

Studies of Voltage-Sensitive Sodium Channels in Cultured Cells Using Ion-Flux and Ligand-Binding Methods

  • William A. Catterall

Abstract

This chapter surveys the development of ion-flux and ligand-binding methods for studies of voltage-sensitive sodium channels and their application to excitable cells in culture. These techniques have proven to be complementary to the electrophysiological methods described in other chapters of this volume in providing new information on the properties of excitable cells in culture and in giving new insight into the fundamental mechanisms of electrical excitability. Electrophysiological methods allow analysis of individual cells; biochemical methods allow analysis of cell populations. Electrophysiological methods give excellent time resolution; biochemical methods are more convenient for pharmacological studies and allow quantitation of ion channel density. One of the principal advantages of cell culture systems for study of electrical excitability is the ability to apply both electrophysiological and biochemical methods in parallel experiments.

Keywords

Sodium Channel Receptor Site Culture Muscle Cell Scorpion Venom Scorpion Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albuquerque, E. X., and Warnick, J., 1972, The pharmacology of batrachotoxin. IV. Interaction with tetrodotoxin on innervated and chronically denervated rat skeletal muscle, J. Pharmacol. Exp. Ther. 180:683–697.PubMedGoogle Scholar
  2. Albuquerque, E. X., Daly, J. W., and Witkop, B., 1971, Batrachotoxin: Chemistry and pharmacology, Science 172:995–1002.PubMedCrossRefGoogle Scholar
  3. Altendorf, K., Harold, F. M., Simoni, R. D., 1974, Impairment and restoration of the energized state in membrane vesicles of a mutant of Escherichia coli lacking adenosine triphosphate, J. Biol. Chem. 249:4587–4593.PubMedGoogle Scholar
  4. Bergman, C., Dubois, J. M., Rojas, E., and Rathmeyer, W., 1976, Decreased rate of sodium conductance inactivation in the node of Ranvier induced by a Polypeptide toxin from Anemonia sulcata, Biochim. Biophys. Acta 445:173–184.Google Scholar
  5. Bolton, A. E., and Hunter, W. M., 1973, The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent, Biochem. J. 133:529–539.PubMedGoogle Scholar
  6. Bulloch, K., Stallcup, W. B., and Cohn, M., 1977, The derivation and characterization of neuronal cell lines from rat and mouse brain, Brain Res. 135:25–36.PubMedCrossRefGoogle Scholar
  7. Burgermeister, W., Catterall, W. A., and Witkot, B., 1977, Histrionicotoxin enhances agonistinduced desensitization of acetylcholine receptor, Proc. Natl. Acad. Sci. USA 74:5754–5758.PubMedCrossRefGoogle Scholar
  8. Catterall, W. A., 1975a, Activation of the action potential sodium ionophore by veratridine and batrachotoxin, J. Biol. Chem. 250:4053–4059.PubMedGoogle Scholar
  9. Catterall, W. A., 1975b, Cooperative activation of the action potential sodium ionophore by neurotoxins, Proc. Natl. Acad. Sci. USA 72:1782–1786.PubMedCrossRefGoogle Scholar
  10. Catterall, W. A., 1975c, Sodium transport by the acetylcholine receptor of cultured muscle cells, J. Biol. Chem. 250:1776–1781.PubMedGoogle Scholar
  11. Catterall, W. A., 1976a, Purification of a toxic protein from scorpion venom which activates the action potential Na+ ionophore, J. Biol. Chem. 251:5528–5536.PubMedGoogle Scholar
  12. Catterall, W. A., 1976b, Activation and inhibition of the action potential Na+ ionophore of cultured rat muscle cells by neurotoxins, Biochem. Biophys. Res. Commun. 68:136–142.PubMedCrossRefGoogle Scholar
  13. Catterall, W. A., 1977a, Membrane potential dependent binding of scorpion toxin to the action potential Na+ ionophore. Studies with a toxin derivative prepared by lactoperoxidase catalyzed iodination, J. Biol. Chem. 252:8660–8668.PubMedGoogle Scholar
  14. Catterall, W. A., 1977b, Activation of the action potential Na+ ionophore by neurotoxins. An allosteric model, J. Biol. Chem. 252:8669–8676.PubMedGoogle Scholar
  15. Catterall, W. A., and Beress, L., 1978, Sea anemone toxin and scorpion toxin share a common receptor site associated with the action potential sodium ionophore, J. Biol. Chem. 253:7393–7396.PubMedGoogle Scholar
  16. Catterall, W. A., and Morrow, C. S., 1978, Binding of saxitoxin to electrically excitable neuroblastoma cells, Proc. Natl. Acad. Sci. USA 75:218–222.PubMedCrossRefGoogle Scholar
  17. Catterall, W. A., and Nirenberg, M., 1973, Sodium uptake associated with activation of action potential ionophores of cultured nerve and muscle cells, Proc. NatL Acad. Sci. USA 70:3759–3763.PubMedCrossRefGoogle Scholar
  18. Catterall, W. A., Ray, R., and Morrow, C. S., 1976, Membrane potential dependent binding of scorpion toxin to the action potential sodium ionophore, Proc. Natl. Acad. Sci. USA 73:2682–2686.PubMedCrossRefGoogle Scholar
  19. Conti, F., Hille, B., Neumcke, B., Nonner, W., and Stampfli, R., 1976, Conductance of the sodium channel in myelinated nerve fibers with modified sodium inactivation, J. J. Physiol. (Lond.) 262:729–742.Google Scholar
  20. Couraud, F., Rochat, H., and Lissitzky, S., 1976, Stimulation of sodium and calcium uptake by scorpion toxin in chick embryo heart cells, Biochim. Biophys. Acta 433:90–100.PubMedCrossRefGoogle Scholar
  21. DeBarry, J., Fosset, M., and Lazdunski, M., 1977, Molecular mechanism of the cardiotoxic action of a Polypeptide neurotoxin from sea anemone on cultured embryonic cardiac cells, Biochemistry 16:3850–3855.CrossRefGoogle Scholar
  22. Evans, M. H., 1972, Tetrodotoxin, saxitoxin, and related substances: Their applications in neurobiology, Int. Rev. Neurobiol. 15:83–166.PubMedCrossRefGoogle Scholar
  23. Fosset, M., DeBarry, J., Lenoir, M.-C., and Lazdunski, M., 1977, Analysis of molecular aspects of Na+ and Ca++ uptakes by embryonic cardiac cells in culture, J. Biol. Chem. 252:6112–6117.PubMedGoogle Scholar
  24. Galper, J., and Catterall, W. A., 1975, Developmental changes in the sensitivity of embryonic heart cells to tetrodotoxin and D600, J. Cell Biol. 67:128a.Google Scholar
  25. Galper, J., and Catterall, W. A., 1978, Developmental changes in the sensitivity of embryonic heart cells to tetrodotoxin and D600, Dev. Biol. 65:216–227.PubMedCrossRefGoogle Scholar
  26. Goldman, D. E., 1943, Potential, impedance, and rectification in membranes, J. Gen. Physiol. 27:37–60.PubMedCrossRefGoogle Scholar
  27. Grinius, L. L., Jasaitis, A. A., Kadziauskas, Y. P., Liberman, E. A., Skulachev, V. P., Topali, V. P., Tsofina, L. M., and Vladimirova, M. A., 1970, Conversion of biomembrane-produced energy into electric form, Biochim. Biophys. Acta 216:1–12.PubMedCrossRefGoogle Scholar
  28. Harris, J. B., and Thesleff, S., 1971, Studies on tetrodotoxin resistant action potentials in denervated skeletal muscle, Acta Physiol. Scand. 83:382–388.PubMedCrossRefGoogle Scholar
  29. Herzog, W. H., Feibel, R. M., and Bryant, S. H., 1964, The effect of aconitine on the giant axon of the squid, J. Gen. Physiol. 47:719–733.PubMedCrossRefGoogle Scholar
  30. Hille, B., 1968, Pharmacological modifications of the sodium channels of frog nerve, J. Gen. Physiol. 51:199–219.PubMedCrossRefGoogle Scholar
  31. Hille, B., 1975, Ionic selectivity, saturation, and block in sodium channels, J. Gen. Physiol. 66:535–560.PubMedCrossRefGoogle Scholar
  32. Hirs, C. H. W., 1955, Chromatography of enzymes on ion exchange resins, Meth. Enzymol. 1:113–125.CrossRefGoogle Scholar
  33. Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (Lond.) 117:500–544.Google Scholar
  34. Hodgkin, A. L., and Katz, B., 1949, The effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol. (Lond.) 108:37–77.Google Scholar
  35. Huang, L. M., Catterall, W. A., and Ehrenstein, G., 1978, Selectivity of cations and nonelectrolytes for acetylcholine-activated channels in cultured muscle cells, J. Gen. Physiol. 71:397–410.PubMedCrossRefGoogle Scholar
  36. Khodorov, B. I., 1978, Chemicals as tools to study nerve fiber sodium channels and effects of batrachotoxin and local anesthetics, in: Membrane Transport Processes, Vol. II (D. C. Tosteson, Yu. A. Ovchinnikov, and R. Latorre, eds.), pp. 153–174, Raven Press, New York.Google Scholar
  37. Kidokoro, Y., 1973, Development of action potentials in a clonal rat skeletal muscle cell line, Nature 241:158–159.CrossRefGoogle Scholar
  38. Kidokoro, Y., 1975a, Developmental changes of membrane electrical properties in a rat skeletal muscle cell line, J. Physiol. (Lond.) 244:129–143.Google Scholar
  39. Kidokoro, Y., 1975b, Sodium and calcium components of the action potential in a developing skeletal muscle cell line, J. Physiol. (Lond.) 244:145–159.Google Scholar
  40. Koppenhöfer, E., and Schmidt, H., 1968, Die Wirkung von Scorpiongift auf die Ionenströme des Ranvierschen Schnurrings. II. Unvollständige Natrium-Inaktivierung, Pflügers Arch. 303:150–161.PubMedCrossRefGoogle Scholar
  41. Land, B. R., Sastre, A., and Podleski, T. R., 1973, Tetrodotoxin-sensitive and insensitive action potentials in myotubes, J. Cell. Physiol. 82:497–510.PubMedCrossRefGoogle Scholar
  42. McDonald, T. F., Sachs, H. G., and DeHaan, R. L., 1972, Development of sensitivity to tetrodotoxin in beating chick embryo hearts, single cells, and aggegrates, Science 176:1248–1250.PubMedCrossRefGoogle Scholar
  43. Miranda, F., Kupeyan, C., Rochat, H., Rochat, C., and Lissitzky, S., 1970, Purification of animal neurotoxins, Eur. J. Biochem. 16:514–523.PubMedCrossRefGoogle Scholar
  44. Monod, J., Wyman, J., and Changeux, J.-P., 1965, On the nature of allosteric transitions: A plausible model, J. Mol. Biol. 12:88–118.PubMedCrossRefGoogle Scholar
  45. Moolenaar, W. H., and Spector, I., 1977, Membrane currents examined under voltage clamp in cultured neuroblastoma cells, Science 196:331–333.PubMedCrossRefGoogle Scholar
  46. Moolenaar, W. H., and Spector, I., 1978, Ionic currents in cultured mouse neuroblastoma cells under voltage-clamp conditions, J. Physiol. (Lond.) 278:265–286.Google Scholar
  47. Narahashi, T., and Seyama, I., 1974, Mechanism of nerve membrane depolarization caused by grayanotoxin I, J. Physiol. (Lond.) 242:471–487.Google Scholar
  48. Narahashi, T., Moore, J. W., and Scott, W. R., 1964, Tetrodotoxin blockage of sodium conductance increase in lobster giant axons, J. Gen. Physiol. 47:965–974.PubMedCrossRefGoogle Scholar
  49. Narahashi, T., Moore, J. W., and Shapiro, B. I., 1969, Condylactis toxin: Interaction with nerve membrane ionic conductances, Science 163:680–681.PubMedCrossRefGoogle Scholar
  50. Narahashi, T., Shapiro, B. I., Deguchi, T., Scuka, M., and Wang, C. M., 1972, Effects of scorpion venom on squid axon membranes, Am. J. Physiol. 222:850–856.PubMedGoogle Scholar
  51. Nelson, P. G., Peacock, J. H., Amano, T., and Minna, J., 1971, Electrogenesis in mouse neuroblastoma cells in vitro, J. Cell. Physiol. 77:337–352.PubMedCrossRefGoogle Scholar
  52. Nichols, D. G., 1974, Hamster brown adipose tissue mitochondira. The control of respiration and the proton electrochemical potential gradient by possible physiological effectors of the proton conductance of the inner membrane, Eur. J. Biochem. 49:573–583.CrossRefGoogle Scholar
  53. Ohta, M., Narahashi, T., and Keeler, R., 1973, Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons, J. Pharmacol. Exp. Ther. 184:143–154.Google Scholar
  54. Okamoto, H., Takahashi, K., and Yamashita, N., 1977, One-to-one binding of a purified scorpion toxin to Na+ channels, Nature 266:465–468.PubMedCrossRefGoogle Scholar
  55. Palfrey, C., and Littauer, U., 1976, Sodium-dependent efflux of K+ and Rb+ through the activated sodium channel of neuroblastoma cells, Biochem. Biophys. Res. Commun. 72:209–215.PubMedCrossRefGoogle Scholar
  56. Patrick, J., and Stallcup, W., 1977, Bungarotoxin binding and cholinergic receptor function on a rat sympathetic nerve line, J. Biol. Chem. 252:8629–8633.PubMedGoogle Scholar
  57. Ray, R., and Catterall, W. A., 1978, Membrane potential dependent binding of scorpion toxin to the action potential sodium ionophore. Studies with a 3-(4-hydroxy 3-[125I]iodophenyl) propionyl derivative, J. Neurochem. 31:397–407.PubMedCrossRefGoogle Scholar
  58. Ray, R., Morrow, C. S., and Catterall, W. A., 1978, Binding of scorpion toxin to receptor sites associated with voltage-sensitive sodium channels in synaptic nerve ending particles, J. Biol. Chem. 253:7307–7313.PubMedGoogle Scholar
  59. Ritchie, J. M., Rogart, R. B., and Strichartz, G. R., 1976, A new method for labelling saxitoxin and its binding to non-myelinated fibers of the rabbit vagus, lobster walking leg, and garfish olfactory nerves, J. Physiol. (Lond.) 261:477–494.Google Scholar
  60. Romey, G., Chicheportiche, R., Lazdunski, M., Rochat, H., Miranda, F., and Lissitzky, S., 1975, Scorpion neurotoxin—A presynaptic toxin which affects both Na+ and K+ channels in axons, Biochem. Biophys. Res. Commun. 64:115–121.PubMedCrossRefGoogle Scholar
  61. Romey, G., Abita, J. P., Schweitz, H., Wunderer, G., and Lazdunski, M., 1976, Sea anemone toxin: A tool to study molecular mechanisms of nerve conduction and excitation-secretion coupling, Proc. Natl. Acad. Sci. USA 73:4055–4059.PubMedCrossRefGoogle Scholar
  62. Sastre, A., and Podleski, T. R., 1976, Pharmacologic characterization of the sodium ionophores in L6 myotubes, Proc. Natl. Acad. Sci. USA 73:1355–1359.PubMedCrossRefGoogle Scholar
  63. Schmidt, H., and Schmitt, O., 1974, Effect of aconitine on the sodium permeability of the node of Ranvier, Pflügers Arch. 394:133–148.CrossRefGoogle Scholar
  64. Schuldiner, S., and Kaback, H. R., 1975, Membrane potential and active transport in membrane vesicles from Escherichia coli, Biochemistry 14:5451–5460.PubMedCrossRefGoogle Scholar
  65. Seyama, I., and Narahashi, T., 1973, Increase in sodium permeability of squid axon membranes by α-dihydro grayanotoxin II, J. Pharmacol. Exp. Ther. 184:299–307.PubMedGoogle Scholar
  66. Spector, I., Kimhi, Y., and Nelson, P. G., 1973, Tetrodotoxin and cobalt blockade of neuroblastoma action potentials, Nature 246:124–126.Google Scholar
  67. Sperelakis, N., 1972, Electrical properties of embryonic heart cells, in: Electrical Phenomena in the Heart (W. De Mello, ed.), pp. 1–56, Academic Press, New York.Google Scholar
  68. Sperelakis, N., and Shigenobu, K., 1972, Changes of membrane properties of chick embryonic hearts during development, J. Gen. Physiol. 60:430–453.PubMedCrossRefGoogle Scholar
  69. Stallcup, W. B., 1977, Comparative pharmacology of voltage-dependent sodium channels, Brain Res. 135:37–53.PubMedCrossRefGoogle Scholar
  70. Stallcup, W. B., and Cohn, M., 1976a, Electrical properties of a clonal cell line as determined by measurement of ion fluxes, Exp. Cell Res. 98:277–284.PubMedCrossRefGoogle Scholar
  71. Stallcup, W. B., and Cohn, M., 1976b, Correlation of surface antigens and cell type in cloned cell lines from the rat central nervous system, Exp. Cell Res. 98:285–297.PubMedCrossRefGoogle Scholar
  72. Sträub, R., 1956, Die Wirkung von Veratridin und Ionen auf das Ruhepotential markhaltiger Nervenfasern des Frosches, Helv. Physiol. Acta 14:1–28.Google Scholar
  73. Ulbricht, W., 1969, The effect of veratridine on excitable membranes of nerve and muscle, Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 61:18–71.Google Scholar
  74. Veselovsky, N. S., Kostyuk, P. G., Krishtal, D. A., Naumov, A. P., and Pidoplichko, V. I., 1977, Ionic currents in the membrane of neuroblastoma cells, Neurofysiology 9:641–643.Google Scholar
  75. Villegas, J., Sevcik, C., Barnola, F. V., and Villegas, R., 1976, Grayanotoxin, veratridine, and tetrodotoxin-sensitive sodium pathways in the Schwann cell membrane of squid nerve fibers, J. Gen. Physiol. 67:369–380.PubMedCrossRefGoogle Scholar
  76. West, G. J., Uki, J., Stahn, R., and Herschman, H., 1977a, Neurochemical properties of cell lines from N-ethyl-N-nitroso urea induced rat tumors, Brain Res. 130:387–392.PubMedCrossRefGoogle Scholar
  77. West, G. J., Uki, J., Herschman, H., and Suger, R. C., 1977b, Adrenergic, cholinergic, and inactive human neuroblastoma cell lines with the action potential sodium ionophore, Cancer Res. 37:1372–1376.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • William A. Catterall
    • 1
  1. 1.Department of PharmacologyUniversity of WashingtonSeattleUSA

Personalised recommendations