Electrophysiology of Clonal Nerve Cell Lines

  • Ilan Spector


In recent years it has become apparent that excitable cells grown in tissue culture provide some of the most advantageous preparations for investigating fundamental questions in neurobiology. Among the different in vitro neuronal systems presently available (for reviews, see Sato, 1973; Nelson, 1975; Fischbach and Nelson, 1977; Patrick et al., 1978; Patterson, 1978; Federoff and Hertz, 1977), clonal cell lines permit important types of experimentation that are impossible in other preparations in vivo or in vitro. The unique features of cell lines include: (1) the ability to multiply indefinitely with fairly consistent phenotypes from generation to generation; (2) the ability to differentiate in response to changes in culture conditions; (3) the feasibility of genetic manipulations such as somatic cell hybridization; (4) the ease in obtaining large quantities of homogeneous material for biochemical experiments; (5) the unusually large size of individual cells in some neuronal lines which makes them particularly accessible to detailed analysis of electrically and chemically activated ionic conductances; and (6) the possibility of obtaining large cells by artificial fusion.


Neuroblastoma Cell Outward Current Voltage Clamp Hybrid Line Neuronal Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. J., Smith, S. J., and Thompson, S. H., 1980, Ionic currents in molluscan soma, Annu. Rev. Neurosci. 3:141–167.PubMedCrossRefGoogle Scholar
  2. Amano, T., Richelson, E., and Nirenberg, M., 1972, Neurotransmitter synthesis by neuroblastoma clones, Proc. Natl. Acad. Sci. USA 69:258–263.PubMedCrossRefGoogle Scholar
  3. Armstrong, C. M., 1971, Interaction of tetraethylammonium ion derivatives with potassium channels of giant axons, J. Gen. Physiol. 58:413–437.PubMedCrossRefGoogle Scholar
  4. Armstrong, C. M., and Hille, B., 1972, The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier, J. Gen. Physiol. 59:388–400.PubMedCrossRefGoogle Scholar
  5. Atwater, I., Dawson, C. M., Ribalet, B., and Rojas, E., 1979, Potassium permeability activated by intracellular calcium ion concentration in the pancreatic β-cell, J. Physiol. (Lond.) 288:575–588.Google Scholar
  6. Augusti-Tocco, B., Sato, G. H., Claude, P., and Potter, D. D., 1970, Clonal cell lines of neurons, Int. Soc. Cell Biol. Symp. 9:109–120.Google Scholar
  7. Burgess, G. M., Claret, M., and Jenkinson, D. H., 1979, Effects of catecholamines, ATP and ionophore A23187 on potassium and calcium movements in isolated hypatocytes, Nature 279:544–546.PubMedCrossRefGoogle Scholar
  8. Cahalan, M.D., 1975, Modification of sodium channel gating in frog myelinated nerve fibers by Centruroides sculpturatus scorpion venom, J. Physiol. (Lond.) 244:511–534.Google Scholar
  9. Chalazonitis, A., and Greene, L. A., 1974, Enhancement in excitability properties of mouse neuroblastoma cells cultured in the presence of dibutyryl cyclic AMP, Brain Res. 72:340–345.PubMedCrossRefGoogle Scholar
  10. Christian, C. N., Nelson, P. G., Peacock, J., and Nirenberg, M., 1977, Synapse formation between two clonal cell lines, Science 196:995–998.PubMedCrossRefGoogle Scholar
  11. Christian, C. N., Nelson, P. G., Bullock, P., Mullinax, D., and Nirenberg, M., 1978, Pharmacologic responses of cells of neuroblastoma × glioma hybrid clone and modulation of synapses between hybrid cells and mouse myotubes, Brain Res. 147:261–276.PubMedCrossRefGoogle Scholar
  12. Dichter, M. A., Tischler, A. S., and Greene, L. A., 1977, Nerve growth factor-induced increase in electrical excitability and acetylcholine sensitivity of a rat pheochromocytoma cell line, Nature 268:501–504.PubMedCrossRefGoogle Scholar
  13. Engelhardt, J. K., Ishikawa, K., and Katase, D. K., 1980, Low potassium is critical for observing developmental increase in muscle resting potential, Brain Res. 190:564–568.PubMedCrossRefGoogle Scholar
  14. Fedoroff, S., and Hertz, L. (eds.), 1977, Cell, Tissue and Organ Cultures in Neurobiology, Academic Press, New York.Google Scholar
  15. Fischbach, G., and Lass, Y., 1978, Acetylcholine noise in cultured chick myoballs: A voltage clamp analysis, J. Physiol. (Lond.) 280:515–526.Google Scholar
  16. Fischbach, G., and Nelson, P., 1977, Cell culture in neurobiology, in: Handbook of Physiology—The Nervous System I (E. R. Kandel, ed.), pp. 719–774, American Physiological Society, Bethesda, Maryland.Google Scholar
  17. Fishman, M. C., and Spector, I., 1980, Blockade of calcium-dependent potassium conductance in neuroblastoma cells by quinine, J. Supramol. Struct. [Suppl.] 4:83.Google Scholar
  18. Giagnoni, G., Sabol, S. L., and Nirenberg, M., 1977, Synthesis of opiate peptides by a clonal pituitary tumor cell line, Proc. Natl. Acad. Sci. USA 74:2259–2263.PubMedCrossRefGoogle Scholar
  19. Greene, L. A., and Tischler, A. S., 1976, Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor, Proc. Natl. Acad. Sci. USA 73:2424–2428.PubMedCrossRefGoogle Scholar
  20. Harris, A. J., and Dennis, M. J., 1970, Acetylocholine sensitivity and distribution on mouse neuroblastoma cells, Science 167:1253–1255.PubMedCrossRefGoogle Scholar
  21. Higashida, H., Wilson, S. P., Adler, M., and Nirenberg, M., 1975, Synapse formation by neuroblastoma and hybrid cell lines, Soc. Neurosci. Abst. 4:591.Google Scholar
  22. Hille, B., 1976, Gating in sodium channels of nerve, Annu. Rev. Physiol. 38:135–152.CrossRefGoogle Scholar
  23. Hille, B., 1978, Ionic channels in excitable membranes, Biophys. J. 22:283–294.PubMedCrossRefGoogle Scholar
  24. Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (Lond.) 117:500–544.Google Scholar
  25. Jacques, Y., Fosset, M., and Lazdunski, M., 1978, Molecular properties of the action potential Na+ ionophore in neuroblastoma cells, J. Biol. Chem. 253:7383–7392.PubMedGoogle Scholar
  26. Jaffe, A. L., and Robinson, R. L., 1978, Membrane potential of the unfertilized sea urchin egg, Dev. Biol. 62:215–228.PubMedCrossRefGoogle Scholar
  27. Khodorov, B. I., and Revenko S. V., 1979, Further analysis of the mechanisms of action of Batrachotoxin on the membrane of myelinated nerve, Neuroscience 4:1315–1330.PubMedCrossRefGoogle Scholar
  28. Kidokoro, Y., 1975, Spontaneous Ca action potentials in a clonal pituitary cell line and their relationship to prolactin secretion, Nature 258:741–742.PubMedCrossRefGoogle Scholar
  29. Kimhi, Y., Palfrey, C., Spector, I., Barak, Y., and Littauer, U. Z., 1976, Maturation of neuroblastoma cells in the presence of dimethylsulfoxide, Proc. Natl. Acad. Sci. USA 73:462–466.PubMedCrossRefGoogle Scholar
  30. Lew, V. L., and Ferreira, H. G., 1978, Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes, Curr. Top. Membr. Trans. 10:218–278.Google Scholar
  31. Lichtshtein, D., Kaback, H.R., and Blume, A. J., 1979a, Use of lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspension, Proc. Natl. Acad. Sci. USA 76:650–654.PubMedCrossRefGoogle Scholar
  32. Lichtshtein, D., Dunlop, K., Kaback, H. R., and Blume, A. J., 1979b, Mechanism of monensin-induced hyperpolarization of neuroblastoma-glioma hybrid NG108-15, Proc. Natl. Acad. Sci. USA 76:2580–2584.PubMedCrossRefGoogle Scholar
  33. Lux, H. D., and Heyer, C.B., 1979, A new electrogenic calcium-potassium system, in: The Neurosciences Fourth Study Program (F. O. Schmitt and F. G. Warden, eds.), pp. 601–622, MIT Press, Cambridge, Massachusetts.Google Scholar
  34. Macdermot, J., Higashida, H., Wilson, S., Matsuzawa, H., Minna, J., and Nirenberg, M., 1979, Adenylate cyclase and acetylcholine release regulated by separate serotonin receptors of somatic cell hybrids, Proc. Natl. Acad. Sci. USA 76:1135–1139.PubMedCrossRefGoogle Scholar
  35. Mains, R. E., Eipper, B. A., and Ling, N., 1977, Common precursor to corticotropins and endorphins, Proc. Natl. Acad. Sci. USA 74:3014–3018.PubMedCrossRefGoogle Scholar
  36. Matsuzawa, H., and Nirenberg, M., 1975, Receptor-mediated shifts in cGMP and cAMP levels in neuroblastoma cells, Proc. Natl. Acad. Sci. USA 72:3473–3476.CrossRefGoogle Scholar
  37. Meech, R. W., 1978, Calcium-dependent potassium activation in nervous tissue, Annu. Rev. Biophys. Bioeng. 7:1–18.PubMedCrossRefGoogle Scholar
  38. Miyaki, M., 1978, The development of action potential mechanism in a mouse neuronal cell line in vitro, Brain Res. 143:349–354.CrossRefGoogle Scholar
  39. Moolennar, W. H., and Spector, I., 1977, Membrane currents examined under voltage clamp in cultured neuroblastoma cells, Science 196:331–333.CrossRefGoogle Scholar
  40. Moolenaar, W. H., and Spector, I., 1978, Ionic currents in cultured mouse neuroblastoma cells under voltage-clamp conditions, J. Physiol. (Lond.) 278:265–286.Google Scholar
  41. Moolenaar, W. H., and Spector, I., 1979a, The calcium action potential and a prolonged calcium-dependent after-hyperpolarization in mouse neuroblastoma cells, J. Physiol. (Lond.) 292:297–306.Google Scholar
  42. Moolenaar, W. H., and Spector, I., 1979b, The calcium current and the activation of a slow potassium conductance in voltage-clamped mouse neuroblastoma cells, J. Physiol. (Lond.) 292:307–323.Google Scholar
  43. Moolenaar, W. H., De Laat, S. W., and Van Der Saag, P. T., 1979, Serum triggers a sequence of rapid ionic conductance changes in quiescent neuroblastoma cells, Nature 279:721–723.PubMedCrossRefGoogle Scholar
  44. Myers, P. R., and Livengood, D. R., 1975, Dopamine depolarizing response in a vertebrate neuronal somatic-cell hybrid, Nature 255:235–237.PubMedCrossRefGoogle Scholar
  45. Nelson, P. G., 1973, Electrophysiological studies of normal and neoplastic cells in tissue culture, in: Tissue Culture of the Nervous System (G. H. Sato, ed.), pp. 135–160, Plenum Press, New York.CrossRefGoogle Scholar
  46. Nelson, P. G., 1975, Nerve and muscle cells in culture, Physiol. Rev. 55:1–61.PubMedCrossRefGoogle Scholar
  47. Nelson, P., 1978, Neuronal cells lines, in: Cell, Tissue and Organ Cultures in Neurobiology (S. Federoff and L. Hertz, eds.), pp. 347–365, Academic Press, New York.Google Scholar
  48. Nelson, P. G., and Henkart, M. P., 1979, Oscillatory membrane potential changes in cells of mesenchymal origin: The role of an intracellular calcium regulating system, J. Exp. Biol. 81:49–61.PubMedGoogle Scholar
  49. Nelson, P G., Ruffner, W., and Nirenberg, M., 1969, Neuronal tumor cells with excitable membranes grown in vitro, Proc. Natl. Acad. Sci. USA 64:1004–1010.PubMedCrossRefGoogle Scholar
  50. Nelson, P. G., Peacock, J., and Amano, T., 1971a, Responses of neuroblastoma cells to iontophoretically applied acetylocholine, J. Cell. Physiol. 77:353–362.PubMedCrossRefGoogle Scholar
  51. Nelson, P. G., Peacock, J., Amano, T., and Minna, J., 1971b, Electrogenesis in mouse neuroblastoma cells in vitro, J. Cell Physiol. 77:337–352.PubMedCrossRefGoogle Scholar
  52. Nelson, P., Christian, C., and Nirenberg, M., 1976, Synapse formation between colonal neuroblastoma × glioma hybrid cells and striated muscle cells, Proc. Natl. Acad. Sci. USA 73:123–127.PubMedCrossRefGoogle Scholar
  53. Nirenberg, M., Wilson, S. P., Higashida, H., Rotter, A., Ray, R., Adler, M., Thompson, J., and Deblas, A., 1979, Synapse plasticity, Fed. Proc. 38:476.Google Scholar
  54. O’Lague, P., and Huttner, S., 1980, Physiological and morphological studies of rat pheochromocytoma cells (PC12) chemically fused and grown in culture, Proc. Natl. Acad. Sci. USA 77:1701–1705.PubMedCrossRefGoogle Scholar
  55. Palfrey, C., 1976, Development of Membrane Properties and Differentiation in Neuroblastoma Cells, Ph.D. Thesis, The Weizmann Institute of Science, Rehovot, Israel.Google Scholar
  56. Palfrey, C., Kimhi, Y., and Littauer, U.Z., 1977, Induction of differentiation in mouse neuroblastoma cells by hexamethylene bisacetamide, Biochem. Biophys, Res. Commun 76:937–942.CrossRefGoogle Scholar
  57. Patrick, J., Heinemann, S., and Schubert, D., 1978, Biology of cultured nerve and muscle, Annu. Rev. Neurosci. 1:417–443.PubMedCrossRefGoogle Scholar
  58. Patterson, P., 1978, Environmental determination of autonomic neurotransmitter functions, Annu. Rev. Neurosci. 1:1–17.PubMedCrossRefGoogle Scholar
  59. Peacock, J., Minna, J., Nelson, P., and Nirenberg, M., 1972, Use of aminopterin in selecting electrically active neuroblastoma cells, Exp. Cell Res. 73:367–377.CrossRefGoogle Scholar
  60. Peacock, J. H., McMorris, F. A., and Nelson, P. G., 1973, Electrical excitability and chemosensitivity of mouse neuroblastoma × mouse or human fibroblast hybrid, Exp. Cell Res. 79:199–212.PubMedCrossRefGoogle Scholar
  61. Pelhate, M., and Pichon, Y., 1974, Selective inhibition of potassium current in the giant axon of the cockroach, J. Physiol. (Lond.) 242:90p–91p.Google Scholar
  62. Reiser, G., Neumann, R., Kemper, W., Lautenschlager, E., and Hamprecht, B., 1977, Influence of cations on the electrical activity of neuroblastoma × glioma hybrid cells, Brain Res. 130:497–504.CrossRefGoogle Scholar
  63. Richelson, E., and Tuttle, J., 1975, Diphenylhydantoin inhibits ionic excitation of mouse neuroblastoma cells, Brain Res. 99:209–212.PubMedCrossRefGoogle Scholar
  64. Ritchie, A. K., and Fambrough, D. M., 1975, Electrophysiological properties of the membrane and acetycholine receptor in developing rat and chick myotubes, J. Gen. Physiol. 66:327–355.PubMedCrossRefGoogle Scholar
  65. Ritchie, J. M., 1979, A pharmacological approach to the structure of sodium channels in myelinated axons, Annu. Rev. Neurosci. 2:341–362.PubMedCrossRefGoogle Scholar
  66. Rotter, A., Ray, R., and Nirenberg, M., 1979, Regulations of calcium uptake in neuroblastoma or hybrid cells—A possible mechanism for synapse plasticity, Fed. Proc. 38:626.Google Scholar
  67. Sato, G. H. (ed.), 1973, Tissue Culture of the Nervous System, Current Topics in Neurobiology, Vol. 1, Plenum Press, New York.Google Scholar
  68. Schauf, C. L., Colton, C. A., Colton, J. S., and Davis, F. A., 1976, Aminopyridine and sparteine as inhibitors of membrane potassium conductance: Effects on Myxicola giant axons and the lobster neuromuscular junction, J. Pharmacol. Exp. Ther. 197:414–425.PubMedGoogle Scholar
  69. Schubert, D., Harris, A. J., Heinemann, S., Kidokoro, Y., Patrick, J., and Steinbach, J. H., 1973, Differentiation and interactions of clonal lines of nerve and muscle, in: Tissue Culture of the Nervous System (G. H. Sato, ed.), pp. 55–86, Plenum Press, New York.CrossRefGoogle Scholar
  70. Schubert, D., Heinemann, S., Carlisle, W., Tarikas, H., Kimes, B., Patrick, J., Steinbach, J. H., Culp, W., and Brandt, B. L., 1974, Clonal cell lines from the rat central nervous system, Nature 249:224–227.PubMedCrossRefGoogle Scholar
  71. Siegelbaum, S. A., and Tsien, R. W., 1980, Calcium-activated transient outward currents in calf cardiac purkinje fibres, J. Physiol. (Lond.) 299:485–506.Google Scholar
  72. Spector, I., and Prives, J. M., 1977, Development of electrophysiological and biochemical membrane properties during differentiation of embryonic skeletal muscle in culture, Proc. Natl. Acad. Sci. USA 74:5166–5170.PubMedCrossRefGoogle Scholar
  73. Spector, I., Kimhi, Y., and Nelson, P. G., 1973, Tetrodotoxin and cobalt blockade of neuroblastoma action potentials, Nature [New Biol.] 246:124–126.Google Scholar
  74. Spector, I., Palfrey, C., and Littauer, U.Z., 1975, Enhancement of the electrical excitability of neuroblastoma cells by valinomycin, Nature 254:121–124.PubMedCrossRefGoogle Scholar
  75. Spitzer, N., 1979, Ionic channels in development, Annu. Rev. Neurosci. 2:363–397.PubMedCrossRefGoogle Scholar
  76. Study, R. E., Breakfield, X. O., Bartfai, T., and Greengard, P., 1978, Voltage-sensitive calcium channels regulate guanosine 3′, 5′-cyclic monophosphate levels in neuroblastoma cells, Proc. Natl. Acad. Sci. USA 75:6295–6299.PubMedCrossRefGoogle Scholar
  77. Tuttle, J., and Richelson, E., 1975, Ionic excitation of a clone of mouse neuroblastoma, Brain Res. 84:129–135.PubMedCrossRefGoogle Scholar
  78. Tuttle, J., and Richelson, E., 1979, Phenytoin action on the excitable membrane of mouse neuroblastoma, J. Pharmcol. Exp. Ther. 211:632–637.Google Scholar
  79. Veselovskii, N. S., Kostyuk, P. G., Krishtal, O. A., and Naumov, A. P., 1977, Transmembrane ionic currents in the membrane of neuroblastoma cells, Neirofiziologiya 9:641–643.Google Scholar
  80. Yeh, J. Z., Oxford, G. S., Wu, C. H., and Narahashi, T., 1976, Interactions of aminopyridines with potassium channels of squid axon membranes, Biophys. J. 16:77–80.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Ilan Spector
    • 1
  1. 1.Laboratory of Biochemical Genetics, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations