Advertisement

Nerve Cells in Clonal Systems

  • Yosef Kimhi

Abstract

A piece of neuronal tube from a frog embryo successfully grown by Harrison (1907) in a drop of clotted lymph was the first “tissue culture” of a nerve cell in vitro. Since then, the art of culturing cells for extended periods of time in defined media has been constantly improved and refined. Consequently, the neurobiologist has been provided with the opportunity to study the development of nervous tissue cells and their interactions with other cells under relatively controlled conditions. Primary cultures of brain cells (amphibian, avian, and mammalian) grown as monolayers or rotating aggregates, explants and single cell cultures from the spinal cord, sympathetic and sensory ganglia, and mixed cultures of nerve and muscle cells have all yielded a large, invaluable volume of information concerning the steps that lead to establishing the neuronal network. However, the complexity of the nervous system and the consequent difficulty of separating homogeneous populations of living neurons from their associated satellite cells make the biochemical studies of differentiation a formidable task. The long quest for a simpler system that exhibits neuronal properties and could still be manipulated under experimental conditions was partially satisfied with the establishment of continuous cell cultures derived from neuronal tumors.

Keywords

Nerve Growth Factor Tyrosine Hydroxylase Adenylate Cyclase Neuroblastoma Cell Neurite Outgrowth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, J., and Holtzer, H., 1968, The loss of phenotypic traits by differentiated cells, V: The effect of 5-bromodeoxyuridine on cloned chondrocytes, Proc. Natl. Acad. Sci. USA 59:1144–1151.PubMedCrossRefGoogle Scholar
  2. Adolphe, M., Giroud, J. P., Fontagne, J., Lechat P., and Timsit, J., 1974, Action of Prostaglandin A2 on the proliferation and morphologic differentiation of murine neuroblastoma cell line, C. R. Soc. Biol. (Paris). 168:694–698.Google Scholar
  3. Akeson, R., and Herschman, H., 1974a, Neural antigens of morphologically differentiated neuroblastoma cells, Nature 249:620–623.CrossRefGoogle Scholar
  4. Akeson, R., and Herschman, H. R., 1974b, Modulation of cell-surface antigens of a murine neuroblastoma, Proc. Natl. Acad. Sci. USA 71:187–191.PubMedCrossRefGoogle Scholar
  5. Akeson, R., and Herschman, H. R., 1975, Clonal variations in murine neuroblastoma. Morphologic and antigenic differentiation, Exp. Cell Res. 93:492–495.PubMedCrossRefGoogle Scholar
  6. Albuquerque, E. X., Barnard, E. A., Chiu, T. H., Lapa, A. J., Dolly, J. O., Jansson, S. E., Daly, J., and Witkop, B., 1973, Acetylcholine receptor and ion conductance modulator sites at the murine neuromuscular junction: Evidence from specific toxin reactions, Proc. Natl. Acad. Sci. USA 70:949–953.PubMedCrossRefGoogle Scholar
  7. Amano, T., Richelson, E., and Nirenberg, M., 1972, Neurotransmitter synthesis of neuroblastoma clones, Proc. Natl. Acad. Sci. USA 69:258–263.PubMedCrossRefGoogle Scholar
  8. Amano, T., Hamprecht, B., and Kemper, W., 1974, High activity of choline-acetyltransferase induced in neuroblastoma-glia hybrid cells, Exp. Cell Res. 85:399–408.PubMedCrossRefGoogle Scholar
  9. Anagnoste, B., Freedman, L. S., Goldstein, M., Broome, J., and Fuxe, K., 1972, Dopamine-hydroxylase activity in mouse neuroblastoma tumors and in cell cultures, Proc. Natl. Acad. Sci. USA 69:1883–1886.PubMedCrossRefGoogle Scholar
  10. Andres, R. Y., Jeug, I., and Bradshaw, R. A., 1977, NGF receptors: Identification of distinct classes in plasma membranes and nuclei of embryonic dorsal root neurons, Proc. Natl. Acad. Sci. USA 74:2785–2789.PubMedCrossRefGoogle Scholar
  11. Angeletti, P. U., and Levi-Montalcini, R., 1970a, Sympathetic nerve cell destruction in newborn mammals by 6-hydroxydopamine, Proc. Natl. Acad. Sci. USA 65:114–121.PubMedCrossRefGoogle Scholar
  12. Angeletti, P. U., and Levi-Montalcini, R., 1970b, Cytolytic effect of 6-hydroxydopamine on neuroblastoma cells, Cancer Res. 30:2863–2869.PubMedGoogle Scholar
  13. Anzil, A. P., Stavrou, D., Blinzinger, K., Herrlinger, H., and Dahme, E., 1977, Ultrastructural comparison between the parenchymal cells of tumors derived from parent and hybrid lines of C1300 mouse neuroblastoma and C6 rat glioma, Cancer Res. 37:2236–2245.PubMedGoogle Scholar
  14. Archer, E. G., Breakefield, W. O., and Sharata, M. N., 1977, Transport of tyrosine, Phenylalanine, tryptophan and glycine in neuroblastoma clones, J. Neurochem. 28:127–135.PubMedCrossRefGoogle Scholar
  15. Augusti-Tocco, G., and Chiarugi, V. P., 1976, Surface glycosaminoglycans as a differentiation cofactor in neuroblastoma cell-cultures, Cell. Differ. 5:161–170.PubMedCrossRefGoogle Scholar
  16. Augusti-Tocco, G., and Sato, G., 1969, Establishment of functional clonal lines of neurons from mouse neuroblastoma, Proc. Natl. Acad. USA 64:311–315.CrossRefGoogle Scholar
  17. Augusti-Tocco, G., Sato, G. H., Claude, P., and Potter, D. D., 1970, Clonal cell lines of neurons. Control mechanisms in the expression of cellular phenotypes, Int. Soc. Cell Biol. Symp. 9:109–120.Google Scholar
  18. Augusti-Tocco, G., Casola, L., and Grasso, A., 1973, Neuroblastoma cells and 14-3-2, a brain-specific protein, Cell. Diff. 2:157–161.CrossRefGoogle Scholar
  19. Augusti-Tocco, G., Casola, L., and Romano, M., 1974, RNA metabolism in neuroblastoma cultures 2. Synthesis of non-ribosomal RNA, Cell. Differ. 3:313–320.PubMedCrossRefGoogle Scholar
  20. Bachrach, U., 1975, Cyclic AMP mediated induction of Ornithine decarboxylase of glioma and neuroblastoma cells, Proc. Natl. Acad. Sci. USA 72:3087–3091.PubMedCrossRefGoogle Scholar
  21. Bachrach, U., 1976, Induction of Ornithine decarboxylase in glioma and neuroblastoma cells, FEBS Lett. 68:63–67.PubMedCrossRefGoogle Scholar
  22. Bachrach, U., 1977, Induction of S-adenosyl-l-methionine decarboxylase in glioma and neuroblastoma cells, FEBS Lett. 75:210–204.CrossRefGoogle Scholar
  23. Bear, M. P., and Schneider, F. H., 1977, The effect of medium pH on rate of growth, neurite formation and acetylcholinesterase activity in mouse neuroblastoma cells in culture, J. Cell Physiol. 91:63–68.PubMedCrossRefGoogle Scholar
  24. Bertolini, L., Amini, M., Vigneti, E., Bosman, C., and Revoltella, R., 1977, Intermediate (10mn) filaments in undifferentiated cells of mouse neuroblastoma clones, Differentiation 8:175–181.PubMedCrossRefGoogle Scholar
  25. Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C., 1978, The binding of agonists to brain muscarinic receptors, Mol. Pharmocol. 141:723–736.Google Scholar
  26. Blosser, J., Abbot, J., and Schain, W., 1976, Sympathetic ganglion cell × neuroblastoma hybrids with opiate receptors, Biochem. Pharmacol. 25:2395–2399.PubMedCrossRefGoogle Scholar
  27. Blosser, J. C., Myers, P. R., and Shain, W., 1978, Neurotransmitter modulation of Prostaglandin E1-stimulated increases in cyclic AMP. I. Characterization of a cultured neuronal cell line in exponential growth phase, Biochem. Pharmacol. 27:1167–1172.PubMedCrossRefGoogle Scholar
  28. Bluff, K., and Dairman, W., 1975, Biosynthesis of biopterin by two clones of mouse neuroblastoma, Mol. Pharmacol. 11:87–93.Google Scholar
  29. Blume, A. J., 1972, Mouse neuroblastoma AChE: Identification of the active forms, Fed. Proc. 31:841.Google Scholar
  30. Blume, A. J., and Foster, C. J., 1975, Mouse neuroblastoma adenylate cyclase: Adenosine and adenosine analogues as potent effectors of adenylate cyclase activity, J. Biol. Chem. 250:5003–5008.PubMedGoogle Scholar
  31. Blume, A. J., and Foster, C. J., 1976, Mouse neuroblastoma adenylate cyclase: Regulation by 2-chloroadenosine, Prostaglandin E1 and the cations Mg2+, Ca2+ and Mn2+, J. Neurochem. 26:305–311.PubMedCrossRefGoogle Scholar
  32. Blume, A. J., Gilbert, F., Wilson, S., Farber, J., Rosenberg, R., and Nirenberg, M., 1970, Regulation of acetylcholinesterase in neuroblastoma cells, Proc. Natl. Acad. Sci. USA 67:786–792.PubMedCrossRefGoogle Scholar
  33. Blume, A. J., Dalton, C., and Sheppard, H., 1973, Adenosine-mediated elevation of cyclic 3′:5′-adenosine monophosphate concentrations in cultured mouse neuroblastoma cells, Proc. Natl. Acad. Sci. USA 70:3099–3102.PubMedCrossRefGoogle Scholar
  34. Blume, A. J., Shorr, J., Finberg, J. P. M., and Spector, S., 1977a, Binding of endogenous non-peptide morphine-like compound to opiate receptors, Proc. Natl. Acad. Sci. USA 74:4972–4981.CrossRefGoogle Scholar
  35. Blume, A. J., Chen, C., and Foster, C. J., 1977b, Muscarinic regulation of cAMP in mouse neuroblastoma, J. Neurochem. 29:625–632.PubMedCrossRefGoogle Scholar
  36. Bock, E., 1978, Nervous system specific proteins, J. Neurochem. 30:7–14.PubMedCrossRefGoogle Scholar
  37. Boeynaems, J. M., and Dumont, J. E., 1975, Quantitative analysis of the binding of ligands to their receptors, J. Cyc. Nucl. Res. 1:123–142.Google Scholar
  38. Bondy, S. C., Prasad, K. N., and Purdy, J. C., 1974, Neuroblastoma: Drug induced differentiation increases proportion of cytoplasmic RNA that contain polyadenylic acid, Science 186:359–361.PubMedCrossRefGoogle Scholar
  39. Booher, J., Sensenbrenner, M., and Mandel, P., 1973, Neuroblastoma cell differentiation: A tissue culture study using time-lapse cinematography, Neurobiology 3:335–338.PubMedGoogle Scholar
  40. Bosman, C., Revoltella, R., and Bertolini, L., 1975, Phagocytosis of nerve growth factor-coated erythrocytes in neuroblastoma rosette-forming cells, Cancer Res. 35:896–905.PubMedGoogle Scholar
  41. Bottenstein, J. E., and Sato, G. H., 1979, Growth of a rat neuroblastoma cell line in serum free supplemented medium. Proc. Natl. Acad. Sci. USA 76:514–517.PubMedCrossRefGoogle Scholar
  42. Brandt, M., Fischer, K., Moroder, L., Wunsch, E., and Hamprecht, B., 1976a, Enkephalin evokes biochemical correlates of opiate tolerance and dependance in neuroblastoma × glioma hybrid cells, FEBS Lett. 68:38–40.PubMedCrossRefGoogle Scholar
  43. Brandt, M., Gullis, R. J., Fischer, K., Buchen, C., Hamprecht, B., Moroder, H., and Wünsch, E., 1976b, Enkephalin regulates the levels of cyclic nucleotides in neuroblastoma × glioma hybrid cells, Nature 262:311–312.PubMedCrossRefGoogle Scholar
  44. Brandt, M., Buchen, C., and Hamprecht, B., 1977, Endorphins exert opiate like action on neuroblastoma × glioma hybrid cells, FEBS Lett. 80:251–254.PubMedCrossRefGoogle Scholar
  45. Brandt, M., Buchen, C., and Hamprecht, B., 1978, Neuroblastoma × glioma hybrid cells as a model system for studying Opioid action, in: Characteristics and Function of Opioids (Van Ree and Terenius, eds.), pp. 299–310, North Holland Biomedical Press, Amsterdam.Google Scholar
  46. Breakefield, X. O., 1975, Reserpine sensitivity of catecholamine metabolism in murine neuroblastoma clone N1E-115, J. Neurochem. 25:877–882.PubMedCrossRefGoogle Scholar
  47. Breakefield, X. O., 1976, Neurotransmitter metabolism in murine neuroblastoma cells, Life Sci. 18:267–278.PubMedCrossRefGoogle Scholar
  48. Breakefield, X. O., and Giller, E. L., 1976, Neurotransmitter metabolism in cell culture, Biochem. Pharmacol. 25:2337–2342.PubMedCrossRefGoogle Scholar
  49. Breakefield, X. O., and Nirenberg, M., 1974, Selection for neuroblastoma cells that synthesize certain transmitters, Proc. Natl. Acad. Sci USA 71:2530–2533.PubMedCrossRefGoogle Scholar
  50. Breakefield, X. O., Neale, E. A., Neale, J. H., and Jacobowitz, D. M., 1975, Localized cate-cholamine storage associated with granules in murine neuroblastoma cells, Brain Res. 92:237–256.CrossRefGoogle Scholar
  51. Brodeur, G. M., and Goldstein, M. N., 1976, Histochemical demonstration of an increase in acetylcholinesterase in established lines of human and mouse neuroblastomas by nerve growth factor, Cytobios 16:133–138.PubMedGoogle Scholar
  52. Brown, J. C., 1971, Surface glycoprotein characteristic of the differentiated state of neuroblastoma C-1300 cells, Exp. Cell Res. 69:440–442.PubMedCrossRefGoogle Scholar
  53. Buonossisi, V., Sato, G., Cohen, A. I., 1962, Hormone producing cultures of adrenal and pituitary tumor origin, Proc. Natl. Acad. Sci. USA 48:1184–1190.CrossRefGoogle Scholar
  54. Burgen, A. S. V., Hiley, C. R., and Young, J. M., 1974, The binding of [3H]propylbenzilylcholine mustard by longitudinal muscle strips from guinea-pig small intestine. Br. J. Pharmacol. 50:145–152.PubMedGoogle Scholar
  55. Burgermeister, W., Klein, W. L., Nirenberg, M., and Witkop, B., 1978, Comparative binding studies with cholinergic ligands and histrionicotoxin at muscarinic receptors of neural cell lines, Mol. Pharmacol. 14:751–767.PubMedGoogle Scholar
  56. Burstein, D. E., and Greene, L. A., 1978, Evidence for RNA synthesis-dependent and independent pathways in stimulation of neurite outgrowth by NGF, Proc. Natl. Acad. Sci. USA 75:6059–6063.PubMedCrossRefGoogle Scholar
  57. Burton, P. R., and Kirkland, W. L., 1972, Actin detected in mouse neuroblastoma cells by binding of heavy meromyosin, Nature [New Biol]. 239:244–246.Google Scholar
  58. Byfield, J. E., and Karlsson, U., 1973, Inhibition of replication and differentiation in malignant mouse neuroblasts, Cell Differ. 2:55–65.PubMedCrossRefGoogle Scholar
  59. Callissano, P., and Cozzari, C., 1974, Interaction of NGF with mouse brain neurotubule proteins), Proc. Natl. Acad. Sci. USA 71:2131–2135.CrossRefGoogle Scholar
  60. Casola, L., Romano, M., DiMatteo, G., Augusti-Tocco, G., and Estenoz, M., 1974, RNA-metabolism in neuroblastoma cultures. 1. Ribosomal-RNA, Dev. Biol. 41:371–379.PubMedCrossRefGoogle Scholar
  61. Chalazonitis, A., and Greene, L. A., 1974, Enhancement in excitability properties of mouse neuroblastoma cells cultured in the presence of dibutyryl cyclic AMP, Brain Res. 72:340–345.PubMedCrossRefGoogle Scholar
  62. Chalazonitis, A., Greene, L. A., and Shain, W., 1975, Excitability and chemosensitivity properties of a somatic-cell hybrid between mouse neuroblastoma and sympathetic-ganglion cells, Exp. Cell Res. 96:225–238.PubMedCrossRefGoogle Scholar
  63. Chalazonitis, A., Minna, J. D., and Nirenberg, M., 1977, Expression and properties of acetylcholine receptors in several clones of mouse neuroblastoma × L cell somatic hybrids, Exp. Cell Res. 105:269–280.PubMedCrossRefGoogle Scholar
  64. Chang, C. H., and Blume, A. J., 1976, Heterogeneity of acetylcholinesterase in neuroblastoma, J. Neurochem. 27:1427–1435PubMedCrossRefGoogle Scholar
  65. Chang, C. M., and Goldman, R. D., 1973, The localization of actin-like fibers in cultured neuroblastoma cells as revealed by heavy meromyosin binding, J. Cell Biol. 57:867–874.PubMedCrossRefGoogle Scholar
  66. Chang, K. J., Miller, R. J., and Cuatrecasas, P., 1978, Interaction of enkephalin with opiate receptors in intact cultured cells, Mol. Pharmacol. 14:951–970.Google Scholar
  67. Chapman, S. K., Martin, M., Hoover, M. S., and Chiou, C. Y., 1978, Ornithine decarboxylase activity and the growth of neuroblastoma cells. The effects of bromoacetylcholine, bromoacetate and 1,3-diaminopropane, Biochem. Pharmacol. 27:717–721.PubMedCrossRefGoogle Scholar
  68. Charalampous, F. C., 1977, Differences in plasma-membrane organization of neuroblastoma cells grown in the differentiated and undifferentiated states, Arch. Biochem. Biophys. 181:103–116.PubMedCrossRefGoogle Scholar
  69. Chelmicka-Szorc, E., and Arnason, B. G. W., 1976, Effect of 6-hydroxydopamine on tumor growth, Cancer Res. 36:2382–2384.PubMedGoogle Scholar
  70. Chen, K. Y., and Canellakis, E. S., 1977, Enzyme regulation in neuroblastoma cells in a salts/glucose medium: Induction of Ornithine decarboxylase by asparagine and glutamine, Proc. Natl. Acad. Sci. USA 74:3791–3795.PubMedCrossRefGoogle Scholar
  71. Chen, J. S., Del Fa, A., Di Luzio, A., and Calissano, P., 1976, Liposome-induced morphological differentiation of murine neuroblastoma, Nature 263:604–606.PubMedCrossRefGoogle Scholar
  72. Christensen, H. N., De Cespedes, C., Handlogten, M. E., and Ronquist, G., 1973, Energization of amino acid transport, studied in the Ehrlich ascites tumor cell, Biochim. Biophys. Acta 300:487–522.PubMedGoogle Scholar
  73. Christian, C. N., Nelson, P. G., Peacock, J., and Nirenberg, M., 1977, Synapse formation between two clonal cell lines, Science 196:995–998.PubMedCrossRefGoogle Scholar
  74. Christian, C. N., Nelson, P. G., Bullock, P., Mullinax, D., and Nirenberg, M., 1978, Pharmacologic responses of cells of a neuroblastoma × glioma hybrid clone and modulation of synapses between hybrid cells and mouse myotubes, Brain Res. 147:261–276.PubMedCrossRefGoogle Scholar
  75. Ciesielski-Treska, J., Stefanov, V., and Mandel, P., 1975, Acetylcholinesterase activity of neuroblastoma and different glial cells in co-culture, C. R. Acad. Sci. [D] (Paris) 281:1261–1264.Google Scholar
  76. Ciesielski-Treska, J., Tholey, G., Wurtz, B., and Mandel, P., 1976, Enzymic modifications in a cultivated neuroblastoma clone after bromodeoxyuridine treatment, J. Neurochem. 26:465–469.PubMedCrossRefGoogle Scholar
  77. Claude, P., and Augusti-Tocco, G., 1970, Ultrastructural and cytochemical studies of mouse neuroblastoma cells in tissue culture, J. Cell Biol. 47:88.CrossRefGoogle Scholar
  78. Cooper, A., Munden, H. R., and Brown, G. L., 1976, The growth of mouse neuroblastoma cells in controlled orientations on thin films of silicon monoxide, Exp. Cell Res. 103:435–439.PubMedCrossRefGoogle Scholar
  79. Croizat, B., Berthelot, F., Felsani, A., and Gros, F., 1977, Poly(A)-containing RNA in neuroblastoma: Immature and differentiated cells in culture, Eur. J. Biochem. 74:405–412.PubMedCrossRefGoogle Scholar
  80. Cronemeyer, R. L., Thuillez, P. E., Shows, T. B., and Morrow, J., 1974, 6-Hydroxydopamine sensitivity in mouse neuroblastoma and neuroblastoma × L-cell hybrids, Cancer Res. 34:1652–1657.PubMedGoogle Scholar
  81. Daley, J., 1977, Cyclic Nucleotides in the Nervous System, Plenum Press, New York.CrossRefGoogle Scholar
  82. Daniels, M. P., and Hamprecht, B., 1974, The ultrastructure of neuroblastoma × glioma somatic-cell hybrids—expression of neuronal characteristics stimulated by dibutryl adenosine 3′, 5′ cyclic monophosphate, J. Cell Biol, 63:691–699.PubMedCrossRefGoogle Scholar
  83. Debault, E., and Miliard, S. A., 1973, Inhibition of growth by 6-hydroxydopamine in cultured cells of neuronal and nonneuronal origin, Cancer Res. 33:745–749.Google Scholar
  84. DeLellis, R. A., Rabson, A. S., and Albert, D., 1970, The cytochemical distribution of catecholamines in the C-1300 murine neuroblastoma, J. Histochem. Cytochem. 18:913–914.PubMedCrossRefGoogle Scholar
  85. DeLellis, R. A., Merk, F. B., Deckers, P., Warren, S., and Balogh, K., 1973, Ultrastructure and in vitro growth characteristics of a transplantable rat pheochromocytoma, Cancer 32:227–235.PubMedCrossRefGoogle Scholar
  86. De Potter, W. P., Fraeyman, N. H., Palm, J. W., and De Schaepdryver, A. F., 1978, Localization of noradrenaline and dopamine-β-hydroxylase in C1300 mouse neuroblastoma: A biochemical and electron microscope study, Life Sci. 23:2665–2674.PubMedCrossRefGoogle Scholar
  87. DeVellis, J., Inglish D., Cole, R., and Molson, J., 1970, Effects of hormones on the differentiation of cloned lines of neurons and glial cells, in: influence of Hormones on the Nervous System, pp. 25–39, S. Karger, Basel.Google Scholar
  88. DeVellis, J., Inglish, D., and Augusti-Tocco, G., 1971, The influence of hormones on neurite formation in a neuroblastoma cell line, in: Third Internation Meeting of the International Society for Neurochemistry, Budapest, July 5–9, 1971, p. 191.Google Scholar
  89. Dichter, M. A., Tischler, A. S., and Greene, L. A., 1977, NGF-induced increase in electrical excitability and acetylcholine sensitivity of a rat pheochromocytoma cell line, Nature 268:501–504.PubMedCrossRefGoogle Scholar
  90. Dickmann Gerber, L., 1978, Binding assay for Opioid peptides with neuroblastoma × glioma hybrid cells: Specificity of the receptor site, Brain Res. 151:117–196.CrossRefGoogle Scholar
  91. Donnelly, C. H., Richelson, E., and Murphy, D. L., 1976, Properties of monoamine oxidase in mouse neuroblastoma NIE-115 cells, Biochem. Pharmacol. 25:1639–1643.PubMedCrossRefGoogle Scholar
  92. Ebendal, T., and Jacobson, C. O., 1975, Human glial cells stimulating outgrowth of axons in cultured chick embryo ganglia, Zoon 3:169–172.Google Scholar
  93. Ebendal, T., and Jacobson, C. O., 1977, Tissue explants affecting extension and orientation of axons in cultured chick embryo ganglia, Exp. Cell Res. 105:379–387.PubMedCrossRefGoogle Scholar
  94. Eiper, B. A., 1972, Rat brain microtubule protein purification and determination of covalently bound phosphate carbohydrate, Proc. Natl. Acad. Sci. USA 69:2283–2287.CrossRefGoogle Scholar
  95. Falck, B., Hillarp, N. A., Thieme, G., and Torp, A., 1962, Fluorescence of catecholamines and related compounds condensed with formaldehyde, J. Histochem. Cytochem. 10:348–354.CrossRefGoogle Scholar
  96. Fischbach, G. D., and Nelson, P. G., 1977, Cell cultures in neurobiology, in: Handbook of Physiology, Chapter 20, American Physiological Society, Bethesda.Google Scholar
  97. Friedman, D. L., 1976, Role of cyclic nucleotides in cell growth and differentiation, Physiol. Rev. 56:652–708.PubMedGoogle Scholar
  98. Friend, C., 1977, The phenomenon of differentiation in murine erythroleukemic cells, Harvey Lect. 72:253–281.Google Scholar
  99. Friend, C., Preisler, H. D., and Scher, W., 1976, Studies on the control of differentiation of murine virus-induced erythroleukemic cells, Curr. Top. Dev. Biol., 8:81–101.CrossRefGoogle Scholar
  100. Furmanski, P., 1973, Neurite extension by mouse neuroblastoma: Evidence for two modes of induction, Differentiation 1:319–322.CrossRefGoogle Scholar
  101. Furmanski, P., and Lubin, M., 1972, Effects of dimethylsulfoxide on expression of differentiated functions in mouse neuroblastoma, J. Natl. Cancer Inst. 48:1355–1361.PubMedGoogle Scholar
  102. Furmanski, P., Silverman, D. J., and Lubin, M., 1971, Expression of differentiated functions in mouse neuroblastoma mediated by dibutyryl-cyclic adenosine monophosphate, Nature 233:413–415.PubMedCrossRefGoogle Scholar
  103. Furshpan, E. J., Macleish, P. R., O’Lague, P. H., and Potter, D. D., 1976, Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in micro-cultures: Evidence for cholinergic, adrenergic and dual-function neurons, Proc. Natl. Acad. Sci. USA 73:4225–4229.PubMedCrossRefGoogle Scholar
  104. Garvican, J. H., and Brown, G. L., 1977, A comparative analysis of the protein components of plasma membranes isolated from differentiated and undifferentiated mouse neuroblastoma cells in tissue culture, Eur. J. Biochem. 76:251–261.PubMedCrossRefGoogle Scholar
  105. Gill, E. W., and Rang, H. P., 1966, An alkylating derivative of benzylcholine with specific and long lasting parasympatholytic activity, Mol. Pharmacol. 2:284–297.PubMedGoogle Scholar
  106. Gilman, A. G., and Nirenberg, M., 1971, Regulation of adenosine 3′,5′-cyclic monophosphate metabolism in cultured neuroblastoma cells, Nature 234:356–358.PubMedCrossRefGoogle Scholar
  107. Glazer, R. I., and Schneider, F. H., 1975, Effects of adenosine 3′:5′-monophosphate and related agents on ribonucleic acid synthesis and morphological differentiation in mouse neuroblastoma cells in culture, J. Biol. Chem. 250:2745–2749.PubMedGoogle Scholar
  108. Glick, M. C., Kimhi, Y., and Littauer, U. Z., 1973, Glycopeptides from surface membranes of neuroblastoma cells, Proc. Natl. Acad. Sci. USA 70:1682–1687.PubMedCrossRefGoogle Scholar
  109. Glick, M. C., Kimhi, Y., and Littauer, U. Z., 1976, Surface membrane alterations in somatic cell hybrids of neuroblastoma and glioma cells, Nature 259:230–232.PubMedCrossRefGoogle Scholar
  110. Goldstein, L. I., Lowney, B., and Pal, K., 1971, Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain, Proc. Natl. Acad. Sci. USA 68:1742.PubMedCrossRefGoogle Scholar
  111. Goldstein, M. N., and Pinkel, D., 1957, Long-term tissue culture of neuroblastoma, J. Natl. Cancer Inst. 20:675–689.Google Scholar
  112. Graham, D. C., Tiffany, S. M., Bell, W. R., and Gutknecht, W. F., 1978, Auto-oxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro, Mol. Pharmacol. 14:644–653.PubMedGoogle Scholar
  113. Graham, D. I., and Gonatas, N. K., 1976, Subcutaneous C-1300 murine neuroblastoma—Light and ultrastructural study, Neuropathol. Appl. Neurobiol. 2:451–458.CrossRefGoogle Scholar
  114. Graham, D. I., Gonatas, N. K., and Charalampous, F. C., 1974, The undifferentiated and extended forms of C1300 murine neuroblastoma. An ultrastructural study and detection of concanavalin A binding sites on the plasma membrane, Am. J. Pathol. 76:285–312.PubMedGoogle Scholar
  115. Green, R. D., and Stanberry, L. R., 1977, Elevation of cyclic-AMP in C-1300 murine neuroblastoma by adenosine and related compounds and the antagonism of this response by methylxanthines, Biochem. Pharmacol. 26:37–43.PubMedCrossRefGoogle Scholar
  116. Greene, L. A., 1978, NGF prevents the death and stimulates the neuronal differentiation of clonal PC-12 pheochromocytoma cells in serum-free medium, J. Cell Biol. 78:747–755.PubMedCrossRefGoogle Scholar
  117. Greene, L. A., and Rein, G., 1977, Dopaminergic properties of a somatic cell hybrid line of mouse neuroblastoma × sympathetic ganglion cells, J. Neurochem. 29:141–150.PubMedCrossRefGoogle Scholar
  118. Greene, L. A., and Rein, G., 1978, Short term regulation of catecholamine biosynthesis in an NGF responsive clonal line of rat pheochromocytoma cells, J. Neurochem. 30:549–555.PubMedCrossRefGoogle Scholar
  119. Greene, L. A., and Tischler, A. S., 1976, Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor, Proc. Natl. Acad. Sci. USA 73:242–2428.CrossRefGoogle Scholar
  120. Greengard, P., 1976, Possible role for cyclic nucleotide and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters, Nature 260:101–108.PubMedCrossRefGoogle Scholar
  121. Haber, B., and Hutchison, H. T., 1976, Uptake of neurotransmitters and precursors by clonal cell lines of neural origin, Adv. Exp. Med. Biol. 69:179–198.PubMedGoogle Scholar
  122. Haffke, S. C., and Seeds, N. W., 1975, Neuroblastoma: The E. coli of neurobiology? Life Sci. 16:1649–1658.PubMedCrossRefGoogle Scholar
  123. Haga, T., and Noda, I. T., 1973, Choline uptake systems of rat brain synaptosomes, Biochim. Biophys. Acta 291:564–575.PubMedCrossRefGoogle Scholar
  124. Hamprecht, B., 1976, Neuron models, Angew. Chem. [Engl.] 15:194–206.CrossRefGoogle Scholar
  125. Hamprecht, B., 1977, Structural, electrophysiological, biochemical and pharmacological properties of neuroblastoma-glioma cell hybrids in cell culture, Int. Rev. Cytol. 49:99–170.PubMedCrossRefGoogle Scholar
  126. Hamprecht, B., and Schultz, J., 1973a, Influence of noradrenaline, Prostaglandin E1 and inhibitors of Phosphodiesterase activity on levels of cAMP in somatic cell hybrids, Hoppe Seylers Z. Physiol. Chem. 354:1633–1641.PubMedCrossRefGoogle Scholar
  127. Hamprecht, B., and Schultz, J., 1973b, Stimulation by Prostaglandin E1 of adenosine 3′:5′-cyclic monophosphate formation in neuroblastoma cells in the presence of phosphodieterase inhibitors, FEBS Lett. 34:85–89.PubMedCrossRefGoogle Scholar
  128. Hamprecht, B., Jaffee, B. N., and Philpott, G. W., 1973, Prostaglandin production by neuroblastoma, glioma and fibroblast cell lines; stimulation by N6,02′-dibutyryl adenosine 3′:5′-cyclic monophosphate, FEBS Lett. 36:193–198.PubMedCrossRefGoogle Scholar
  129. Hamprecht, B., Traber, J., and Lamprecht, F., 1974, Dopamine-beta-hydroxylase activity in cholinergic neuroblastoma × glioma hybrid cells; increase of activity by N602′-dibutyryladenosine 3′:5′-cyclic monophosphate, FEBS Lett. 42:221–226.PubMedCrossRefGoogle Scholar
  130. Harkins, J., Arsenault, M., Schlesinger, K., and Kates, J., 1972, Induction of neuronal functions—acetylcholine-induced acetylcholinesterase activity in mouse neuroblastoma cells, Proc. Natl. Acad. Sci USA 69:3161–3164.PubMedCrossRefGoogle Scholar
  131. Harris, A. J., and Dennis, M. J., 1970, Acetylcholine sensitivity and distribution in mouse neuroblastoma cells, Science 167:1253–1255.PubMedCrossRefGoogle Scholar
  132. Harris, A. J., Heinemann, S., Schubert, D., and Tarakis, H., 1971, Trophic interaction between cloned tissue culture lines of nerve and muscle, Nature 231:296–301.PubMedCrossRefGoogle Scholar
  133. Harrison, R. G., 1907, Observations on the living developing nerve fiber, Anat. Rec. 1:116–118.CrossRefGoogle Scholar
  134. Hawkins, M., and Breakefield, X. O., 1978, Monoamine oxidase A and B in cultured cells, J. Neurochem. 30:1391–1397.PubMedCrossRefGoogle Scholar
  135. Hazum, E., Chang, K. J., and Cuatracasas, P., 1979, Rapid degradation of [3H]leucine-enkephalin by intact neuroblastoma cells, Life Sci. 24:137–144.PubMedCrossRefGoogle Scholar
  136. Hermetet, J. C., Ciesielski-Treska, J., and Mandel, P., 1972a, Cytochemical demonstration of catecholamines and acetylcholinesterase activity in neuroblastoma cells in culture, J. Histochem. Cytochem., 20:136–138.CrossRefGoogle Scholar
  137. Hermetet, J. C., Ciesielski-Treska, J., and Mandel, P., 1972b, Effets du NGF sur les cultures de neuroblastes du neuroblastoma C1300, C. R. Soc. Biol. (Paris) 166:1120–1125.Google Scholar
  138. Hermetet, J. C., Ciesilski-Treska, J., Warter, S., and Mandel, P., 1973, Differential effects of insulin on different clones of neuroblastoma C1300 of mouse, J. Physiol. (Paris) 67:280–80.Google Scholar
  139. Herschman, H. R., and Lerner, M. P., 1973, Production of a nervous-system specific protein (14.3.2) by human neuroblastoma cells in culture, Nature [New Biol.] 241:242–244.Google Scholar
  140. Hiller, J. M., and Simon, E. J., 1973, Inhibition by levorphanol of the induction of acetylcholinesterase in a mouse neuroblastoma cell line, J. Neurochem. 20:1789–1792.PubMedCrossRefGoogle Scholar
  141. Hiller, G., and Weber, K., 1978, Radioimmunoassay for tubulin: A quantitative comparison of the tubulin content of different established tissue culture cells and tissues, Cell 14:795–804.PubMedCrossRefGoogle Scholar
  142. Hinkley, R. E., and Telser, A. G., 1974, The effects of halothane on cultured mouse neuroblastoma cells. I. Inhibition of morphological differentiation, J. Cell Biol. 63:531–540.PubMedCrossRefGoogle Scholar
  143. Hudson, J. E., and Johnson, T. C., 1977a, Rapidly metabolized glycoproteins in a neuroblastoma cell line, Biochim. Biophys. Acta 497:567–577.PubMedCrossRefGoogle Scholar
  144. Hudson, J. E., and Johnson, T. C., 1977b, Degradation and turnover of fucosylated glycoproteins in the plasma-membrane of a neuroblastoma-cell line, Biochem. J. 166:217–223.PubMedGoogle Scholar
  145. Hughes, J., Smith, T. W., Kosterlitz, H. W., Forthergill, L. A., Morgan, B. A., and Morris, H. R., 1975, Identification of 2 related pentapeptides from the brain with potent opiate agonist activity, Nature 258:577–579.PubMedCrossRefGoogle Scholar
  146. Hutchinson, H. T., Suddith, R. L., Risk, M., and Haber, B., 1976, Uptake of neurotransmitters and precursors by clonal lines of astocytoma and neuroblastoma. 3. Transport of choline, Neurochem. Res. 1:201–215.CrossRefGoogle Scholar
  147. Isenberg, G., Rieske, E., and Kreutzberg, G. W., 1978, Distribution of actin and tubulin in neuroblastoma cells, Cytobiology 15:382–389.Google Scholar
  148. Jacobson, M., 1978, Developmental Neurobiology, Plenum Press, New York. and London.Google Scholar
  149. Jorgensen, A. O., Subrahmanyan, L., Turnbull, C., and Kalnins, V. I. 1976, Localization of the neurofilament protein in neuroblastoma cells by immunofluorescent staining, Proc. Natl. Acad. Sci. USA 73:3192–3196.PubMedCrossRefGoogle Scholar
  150. Joseph, B. S., and Oldstone, M. B. A., 1974, Expression of selected antigens on the surface of cultured neural cells, Brain Res. 80:421–434.PubMedCrossRefGoogle Scholar
  151. Kates, J. R., Winterton, R., and Schlessinger, K., 1971, Induction of acetylcholinesterase activity in mouse neuroblastoma tissue culture cells, Nature 229:345–347.PubMedCrossRefGoogle Scholar
  152. Kato, A. C., Lefresne, P., Berwald-Netter, Y., Beaujouan, J. C., Glowinski, J., and Gross, F., 1977, Choline stimulates the synthesis and accumulation of acetete in a cholinergic neuroblastoma clone, Biochem. Biophys. Res. Commun. 78:350–356.PubMedCrossRefGoogle Scholar
  153. Kenimer, J. G., 1978, Desensitization of adenylate cyclase by PGE, in neuroblastoma × glioma hybrid cells, Fed. Proc. 37:1359.Google Scholar
  154. Kimhi, Y., Palfrey, C., Spector, I., Barak, Y., and Littauer, U. Z., 1976, Maturation of neuroblastoma cells in the presence of dimethylsulfoxide, Proc. Natl. Acad. Sci. USA 73:462–466.PubMedCrossRefGoogle Scholar
  155. Kimhi, Y., Mahler, A., and Saya, D., 1980, Acetylcholinesterase from mouse neuroblastoma cells, isoenzymes and their properties, J. Neurochem. 34:554–559.PubMedCrossRefGoogle Scholar
  156. Klebe, R. J., and Ruddle, F. H., 1969, Neuroblastoma: Cell culture analysis of a differentiating stem cell system, J. Cell Biol. 43:69a.Google Scholar
  157. Klee, W. A., and Nirenberg, M., 1974, A neuroblastoma × glioma hybrid cell line with morphine receptors, Proc. Natl. Acad. Sci. USA 71:3474–3477.PubMedCrossRefGoogle Scholar
  158. Klee, W. A., and Nirenberg, M., 1976, Mode of action of endogenous opiate peptides, Nature 263:609–612.PubMedCrossRefGoogle Scholar
  159. Klee, W. A., Sharma, S. K., and Nirenberg, M., 1975, Opiate receptors as regulators of adenylate cyclase, Life Sci. 16:1869–1874.PubMedCrossRefGoogle Scholar
  160. Klee, W. A., Lampert, A., and Nirenberg, M., 1976, Dual regulation of adenylate cyclase by endogenous opiate peptides, in: Opiates and Endogenous Opioid Peptides (H. W. Kosterlitz, ed.), pp. 153–159, Elsvier-North Holland, Amsterdam.Google Scholar
  161. Klein, W. L., Nathanson, N., Nirenberg, M., 1979, Muscarinic acetylcholine receptor regulation by accelerated rate of receptor loss, Biochem. Biophys. Res. Commun. 90:506–512.PubMedCrossRefGoogle Scholar
  162. Koike, T., and Miyake, M., 1977, Effect of concanavalin A on the cholinergic responses of mouse neuroblastoma cells, Neurosci. Lett. 5:209–213.PubMedCrossRefGoogle Scholar
  163. Kramer, P. M., and Tobey, R. A., 1972, Cell cycle dependent desquamation of heparin sulfate from cell surface, J. Cell Biol. 55:713–717.CrossRefGoogle Scholar
  164. Kumar, S., Becker, G., and Prasad, K. N., 1975, Cyclic adenosine 3′-5′-monophosphate Phosphodiesterase activity in malignant and cyclic adenosine 3′-5′-monophosphate-induced “differentiated” neuroblastoma cells, Cancer Res. 35:82–87.PubMedGoogle Scholar
  165. Lampert, A., Nirenberg, M., and Klees, W. A., 1976, Tolerance and dependence evoked by an endogenous opiate peptide, Proc. Natl. Acad. Sci. USA 73:3165–3167.PubMedCrossRefGoogle Scholar
  166. Landis, S. C., 1976, Rat sympathetic neurons and the cardiac myocytes developing in microcultures: Correlation of the fine structure of endings with neurotransmitter function in single neurons, Proc. Natl. Acad. Sci. USA 73:4220–4224.PubMedCrossRefGoogle Scholar
  167. Lanks, K. W., Dorwin, J. M., and Papirmeister, B., 1974a, Increased rate of acetylcholinesterase synthesis in differentiating neuroblastoma cells, J. Cell Biol. 63:824–830.PubMedCrossRefGoogle Scholar
  168. Lanks, K., Somers, L., Papirmeister, B., and Yamamura, H., 1974b, Choline transport by neuroblastoma cells in tissue culture, Nature 252:476–478.PubMedCrossRefGoogle Scholar
  169. Lanks, K. W., Turnbull, J. D., Aloyo, V. J., Dorwin, J., and Papirmeister, B., 1975, Sulfur mustards induce neurite extension and acetylcholinesterase synthesis in cultured neuroblastoma cells, Exp. Cell Res. 93:355–362.PubMedCrossRefGoogle Scholar
  170. Lasek, R. J., and Hoffman, P. N., 1976, The neuronal cytoskeleton, axonal transport and axonal growth, in: Cell Motility Book C: Microtubules and Related Proteins (R. Goldman, J. Pollarad, and J. Rosenbaum, eds), pp. 1021–1051, Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
  171. Lasher, R., and Cohn. R. D., 1969, The effect of 5-bromodeoxyuridine on the differentiation of chondrocytes in vitro, Dev. Biol. 19:415–435.PubMedCrossRefGoogle Scholar
  172. Lazo, J. S., and Ruddon, R. W., 1977, Neurite extension and maligancy of neuroblastoma cells after treatment with Prostaglandin E1 and papaverine, J. Natl. Cancer Inst. 59:137–143.PubMedGoogle Scholar
  173. Lazo J. S., Prasad, K. N., and Ruddon, R. W., 1976, Synthesis and phosphorylation of chromatin-associated proteins in cyclic AMP-induced “differentiated” neuroblastoma cells in culture, Exp. Cell Res. 100:41–46.PubMedCrossRefGoogle Scholar
  174. Ledig, M., Ciesielski-Treska, J., Cam, Y., Montagnon, D., and Mandel, P., 1975, ATPase activity of neuroblastoma cells in culture, J. Neurochem. 25:635–640.PubMedCrossRefGoogle Scholar
  175. Lee, V., Shelanski, M. L., and Greene, L. A., 1977, Specific neural and adrenal medullary antigens detected by antisera to clonal PC12 pheochromocytoma cells, Proc. Natl. Acad. Sci. USA 74:5021–5025.PubMedCrossRefGoogle Scholar
  176. Levi-Montalcini, R., 1976, The NGF: Its role in growth, differentiation and function of the sympathetic adrenergic neuron, Prog. Brain Res. 45:235–258.PubMedCrossRefGoogle Scholar
  177. Levi-Montalcini, R., and Angeletti, R., 1968, Nerve growth factor, Physiol. Rev. 48:534–569.PubMedGoogle Scholar
  178. Libet, B., 1979, Which postsynaptic action of dopamine is mediated by cAMP? Life Sci. 24:1043–1058.PubMedCrossRefGoogle Scholar
  179. Liebermann, D., and Sachs, L., 1978, Nuclear control of neurite induction in neuroblastoma cells, Cell Res. 113:383–390.CrossRefGoogle Scholar
  180. Lim, R., and Mitsunobu, K., 1972, Effect of db-cAMP on nucleic acid synthesis and protein synthesis in neuronal and glial tumor cells, Life Sci. 11:1063–1070.CrossRefGoogle Scholar
  181. Lindsay, R. M., and Monard, D., 1977, Influence of serum lipids on morphology of neuroblastoma cells, Experientia 33:823–827.Google Scholar
  182. Littauer, U. Z., Palfrey, C., Kimhi, Y., and Spector, I., 1976, Induction of differentiation in mouse neuroblastoma cells. National Cancer Institute Monograph No. 48, Third Decennial Review Conference, p. 333-337.Google Scholar
  183. Lloyd, T., and Breakefield, X. O., 1974, Tyrosine-dependent increase of tyrosine hydroxylase in neuroblastoma cells, Nature 252:719–720.PubMedCrossRefGoogle Scholar
  184. Lloyd, T., Jones-Ebersole, B., and Schneider, F. H., 1978a, Simulation of tyrosine hydroxylase activity in cultured mouse neuroblastoma cells by monocarboxylic acids, J. Neurochem. 30:1641–1643.PubMedCrossRefGoogle Scholar
  185. Lloyd, T., Weizs, J., and Breakefield, X. O., 1978b, The catechol estrogen, 2-hydroxyestradiol inhibits catechol-0-methyltransferase activity in neuroblastoma cells, J. Neurochem. 31:245–250.PubMedCrossRefGoogle Scholar
  186. Mandel, P., Ciesielski-Treska, J., Hermetet, J. C., Zwiller, J., Mack, G., and Goridis, 1973a, Catecholamines in neuroblastoma cells, Life Sci. 13:113–115.CrossRefGoogle Scholar
  187. Mandel, P., Ciesielski-Treska, J., Hermetet, J. C., Zwiller, J., Mack, G., and Goridis, C., 1973b, Neuroblastoma cells as a tool for neuronal molecular biology, in: Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), pp. 227–283, Pergamon Press, Oxford.Google Scholar
  188. Mandel, P., Ciesielski-Treska, J., and Sensenbrenner, M., 1976, Neurons in vitro, in: Molecular and Functional Neurobiology (W. H. Gispen, ed.), pp. 111–157, Elsevier, Amsterdam.Google Scholar
  189. Mandel, P., Ciesielski-Treska, J., and Stefanovic, V., 1977, Neuroblast-glioblast interactions: Ecto enzymes, in: Cell, Tissue and Organ Culture in Neurobiology (S. Fedoroff and L. Hertz, eds.), pp. 593–615, Academic Press, New York.Google Scholar
  190. Marchisio, P. C., Osborn, M., and Weber, K., 1978, The intracellular organization of actin and tubulin in cultured C1300 mouse neuroblastoma cells (clone NB41A3), J. Neurocytol. 7:571–582.PubMedCrossRefGoogle Scholar
  191. Martin, S. E., 1974, Mouse brain antigen detected by rat anti-C-1300 antiserum, Nature 249:71–73.PubMedCrossRefGoogle Scholar
  192. Maruyama, T., and Ishikawa, H., 1977, Somatostatin: Its inhibiting effect on the release of hormones and IgG from clonal cell strains: Its Ca-influx dependence, Biochem. Biophys. Res. Commun. 74:1083–1088.PubMedCrossRefGoogle Scholar
  193. Massarelli, R., 1973, Effect of acetylcholinesterase inhibitors on the kinetics of choline incorporation in a clone culture of mouse neuroblastoma, J. Physiol. (Lond.) 67:P351A.Google Scholar
  194. Massarelli, R., and Mandel, P., 1976, On the uptake mechanism of choline in nerve cell cultures, Adv. Exp. Med. Biol. 69:199–209.PubMedGoogle Scholar
  195. Massarelli, R., Ciesielski-Treska, J., Ebel, A., and Mandel, P., 1973, Choline uptake in neuroblastoma cell cultures: Influence of ionic environment, Pharmacol. Res. Commun. 5:397–406.CrossRefGoogle Scholar
  196. Massarelli, R., Ciesielski-Treska, J., Ebel, A., and Mandel, P., 1974a, Kinetics of choline uptake in neuroblastoma clones, Biochem. Pharmacol. 23:2857–2865.PubMedCrossRefGoogle Scholar
  197. Massarelli, R., Sensenbrenner, M., Ebel, A., and Mandel, P., 1974b, Kinetics of choline uptake in mixed neuronal-glial and exclusively glial cultures, Neurobiology 4:414–418.PubMedGoogle Scholar
  198. Mathews, R. A., Johnson, T. C., and Hudson, J. E., 1976, Synthesis and turnover of plasma membrane proteins and glycoproteins in a neuroblastoma cell line, Biochem. J. 154:57–64.PubMedGoogle Scholar
  199. Matsuzawa, H., and Nirenberg, M., 1975, Receptor-mediated shifts in cGMP and cAMP levels in neuroblastoma cells, Proc. Natl. Acad. Sci. USA 72:3472–3476.PubMedCrossRefGoogle Scholar
  200. Matthews, R. T., and Chiou, C. Y., 1978, Choline and diethylcholine transport into a cholinergic clone of neuroblastoma cells, Biochem. Pharmacol. 28:405–409.CrossRefGoogle Scholar
  201. McGee, R., 1978, Choline uptake in neuroblastoma × glioma hybrid NG108-15, Abstracts of the Society of Neuroscience Meeting, Vol. 4, p. 320, Abstract no. 1018.Google Scholar
  202. McGee, R., Simpson, P., Christian, C., Mata, M., Nelson, P., and Nirenberg, M., 1978, Regulation of acetylcholine release from neuroblastoma × glioma hybrid cells, Proc. Natl. Acad. Sci. USA 75:1314–1318.PubMedCrossRefGoogle Scholar
  203. McGuire, J. C., Greene, L. A., and Furano, A. V., 1978, NGF stimulates incorporation of fucose or glucosamine into an external glycoprotein in cultured rat PC12 pheochromocytoma cells, Cell 15:357–365.PubMedCrossRefGoogle Scholar
  204. McMorris, F. A., and Ruddle, F. H., 1974, Expression of neuronal phenotypes in neuroblastoma cell hybrids, Dev. Biol. 39:226–246.PubMedGoogle Scholar
  205. McMorris, F. A., Nelson, P. G., and Ruddle, F. H., 1973, Contributions of clonal systems to neurobiology—a report based on an NRP work session, Neurosci. Res. Prog. Bull. 11:412–536.Google Scholar
  206. McMorris, F. A., Kolberg, A. R., Moore, B. W., and Perumal, A. S., 1974, Expression of the neuron-specific protein, 14-3-2, and steroid sulfatase in neuroblastoma cell hybrids, J. Cell. Physiol. 84:473–480.PubMedCrossRefGoogle Scholar
  207. Michelot, R. J., Lesko, N., Stout, R. W., and Coward, J. K., 1977, Effect of S-adenosylhomocysteine and S-tubercidinylhomocysteine on catecholamine methylation in neuroblastoma cells, Mol. Pharmacol. 13:368–373.PubMedGoogle Scholar
  208. Miller, C., and Kuehl, W. M., 1976, Isolation and characterization of myosin from cloned rat glioma and mouse neuroblastoma cells, Brain Res. 108:115–124.PubMedCrossRefGoogle Scholar
  209. Miller, C. A., and Levine, E. M., 1972, Neuroblastoma: Synchronization of neurite outgrowth in cultures grown on collagen, Science 177:799–802.PubMedCrossRefGoogle Scholar
  210. Miller, R. A., and Ruddle, F. H., 1974, Enucleated neuroblastoma cells form neuntes when treated with dibutyryl cyclic-AMP, J. Cell Biol. 63:295–299.PubMedCrossRefGoogle Scholar
  211. Miller, R. J., and Hiley, C. R., 1974, Anti-muscarinic properties of neuroleptics and drug induced parkinsonism, Nature 248:596–597.PubMedCrossRefGoogle Scholar
  212. Miller, R. J., Chang, K. J., Leighton, J., and Cuatrecasas, J., 1977, Interaction of iodinated enkephalin analogues with opiate receptors, Life Sci. 22:379–388.CrossRefGoogle Scholar
  213. Minna, J. D., and Gilman, A. G., 1973, Expression of genes for metabolism of cAMP in somatic cells. II. Effects of Prostaglandin E1 and theophylline on parental and hybrid cells, J. Biol. Chem. 248:6618–6625.PubMedGoogle Scholar
  214. Minna, J., Glazer, D., and Nirenberg, M., 1972, Genetic dissection of neuronal properties using somatic cell hybrids, Nature 235:225–231.Google Scholar
  215. Minna, J. D., Yavelow, J., and Coon, H. G., 1975, Expression of phenotypes in hybrid somatic cells derived from the nervous system, Genetics 79:373–383.PubMedGoogle Scholar
  216. Monard, D., Solomon, F., Rentsch, M., and Gysin, R., 1973, Glia-induced morphological differentiation in neuroblastoma cells, Proc. Natl. Acad. Sci. USA 70:1894–1897.PubMedCrossRefGoogle Scholar
  217. Monard, D., Stockel, K., Goodman, R., and Thoenen, H., 1975, Distinction between nerve growth factor and glial factor, Nature 258:444–445.PubMedCrossRefGoogle Scholar
  218. Monard, D., Rentsch, M., Schurch-Rathgeb, Y., and Lindsay, R. M., 1977, Morphological differentiation of neuroblastoma cells in medium supplemented with delipidated serum, Proc. Natl. Acad. Sci. USA 74:3893–3897.PubMedCrossRefGoogle Scholar
  219. Moore, B. W., and Perez, V. J., 1968, Specific acidic proteins of the nervous system, in: Physiological and Biochemical Aspect of Nervous Integration (F. D. Carson, ed.), pp. 343–360 Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  220. Morgan, J. L., and Seeds, N. W., 1975. Tubulin constancy during morphological differentiation of mouse neuroblastoma cells, J. Cell Biol 67:136–145.PubMedCrossRefGoogle Scholar
  221. Morrison, M. R., Pardue, S., Brodeur, R., and Rosenberg, R. N., 1978, Actin and histones are the major proteins synthesized by neuroblastoma non-adenylated messenger RNAs, Fed. Proc. 37:1504.Google Scholar
  222. Moss, C. A., 1974, Acid glycosaminoglycans of mouse neuroblastoma C1300 cells, Histochem. J. 6:1–5.PubMedCrossRefGoogle Scholar
  223. Murphy, R. A., Pantazis, N. J., Arnason, B. G. W., and Young, M., 1975, Secretion of a nerve growth factor by mouse neuroblastoma cells in culture. Proc. Natl Acad. Sci. USA 72:1895–1898.PubMedCrossRefGoogle Scholar
  224. Myers, P. R., and Livengood, D. R., 1975, Dopamine depolarising response in a vertebrate neuronal somatic cell hybrid, Nature 255:235–236.PubMedCrossRefGoogle Scholar
  225. Myers, P. R., Blosser, J., and Shain, W., 1978, Neurotransmitter modulation of Prostaglandin E1-stimulated increases in cAMP. II. Characterization of a cultured neuronal cell line treated with dibutyryl cyclic AMP, Biochem. Pharmacol. 27:1173–1177.PubMedCrossRefGoogle Scholar
  226. Nagle, B. W., Doenges, K. H., and Bryan, J., 1977, Assembly of tubulin from cultured cells and comparison with the neurotubulin model, Cell 12:573–586.PubMedCrossRefGoogle Scholar
  227. Nakai, J., 1964, The movements of neurons in tissue-culture, in: Primitive Motile Systems in Cell Biology (R. D. Allan and N. Kamiya, eds.), pp. 337–385, Academic Press, New York.Google Scholar
  228. Narotzky, R., and Bondareff, W., 1974, Biogenic amines in cultured neuroblastoma and astrocytoma cells, J. Cell Biol. 63:64–70.PubMedCrossRefGoogle Scholar
  229. Nathanson, J. A., 1977, Cyclic nucleotides and nervous system function, Physiol. Rev. 57:157–256.PubMedGoogle Scholar
  230. Nathanson, N. M., Klein, W. L., and Nirenberg, M., 1978, Regulation of adenylate cyclase activity mediated by muscarinic acetylcholine receptors, Proc. Natl. Acad. Sci. USA 75:1788–1791.PubMedCrossRefGoogle Scholar
  231. Nelson, P. G., 1977, Neuronal cell lines, in: Cell, Tissue and Organ Culture in Neurobiology (S. Fedoroff and L. Hertz, eds.), pp. 348–365, Academic Press, New York.Google Scholar
  232. Nelson, P. G., Ruffner, W., and Nirenberg, M., 1969, Neuronal tumor cells with excitable membranes grown in vitro, Proc. Natl. Acad. Sci. USA 64:1004–1010.PubMedCrossRefGoogle Scholar
  233. Nelson, P. G., Peacock, J., and Amano, T., 1971a, Responses of neuroblastoma cells to iontophoretically applied acetylcholine, J. Cell. Physiol. 77:353–362.PubMedCrossRefGoogle Scholar
  234. Nelson, P. G., Peacock, J. H., Amano, T., and Minna, J., 1971b, Electrogenesis in mouse neuroblastoma cells in vitro, J. Cell. Physiol. 77:337–352.PubMedCrossRefGoogle Scholar
  235. Nelson, P., Christian, C., and Nirenberg, M., 1976, Synapse formation between clonal neuroblastoma × glioma hybrid cells and striated muscle cells, Proc. Natl. Acad. Sci. USA 73:123–127.PubMedCrossRefGoogle Scholar
  236. Nelson, P. G., Christian, C. N., Daniels, M. P., Henkart, M., Bullock, P., Mullinax, D., and Niremberg, M., 1978, Formation of synapses between cells of a neuroblastoma × glioma hybrid clone and mouse myotubes, Brain Res. 147:245–259.PubMedCrossRefGoogle Scholar
  237. North-Root, H., Martin, D. W., and Toliver, A. P., 1976a, Binding of an opiate, levorphanol, to intact neuroblastoma cells in continuous culture, Physiol. Chem. Phys. 8:221–228.PubMedGoogle Scholar
  238. North-Root, H., Martin, D. W., Jr., and Toliver, A. P., 1976b, Evidence for nuclear sites of stereospecific opiate binding in neuroblastoma cells in continuous culture, Physiol. Chem. Phys. 8:437–446.PubMedGoogle Scholar
  239. Olmsted, J. B., Carlson, K., Klebe, R., Ruddle, F., and Rosenbaum, J., 1970, Isolation of microtubule protein from cultured mouse neuroblastoma cells. Proc. Natl. Acad. Sci. USA 65:129–136.PubMedCrossRefGoogle Scholar
  240. Palfrey, C., Kimhi, Y., and Lettauer, U. Z., 1977, Induction of differentiation in mouse neuroblastoma cells by hexamethylene bisacetamide, Biochem. Biophys. Res. Commun. 76:937–942.PubMedCrossRefGoogle Scholar
  241. Partlow, L. M., and Larrabee, M. E., 1971, Effects of nerve growth factor, embryo age and metabolic inhibitors on growth of fibers and on synthesis of RNA and protein in embryonic sympathetic cells, J. Neurochem. 18:2101–2118.PubMedCrossRefGoogle Scholar
  242. Patrick, J., and Stallcup, W. B., 1977, Immunological distinction between acetylcholine receptor and the α-bungarotoxin-binding component on sympathetic neurons, Proc. Natl. Acad. Sci. USA 74:4689–4692.PubMedCrossRefGoogle Scholar
  243. Paul, S. M., and Axelrod, J., 1977, Catechol estrogens: Presence in brain and endocrine tissues, Science 197:657–659.PubMedCrossRefGoogle Scholar
  244. Peacock, J. M., and Nelson, P. G., 1973, Chemosensitivity of mouse neuroblastoma cells in vitro, J. Neurobiol. 4:363–374.PubMedCrossRefGoogle Scholar
  245. Peacock, J. H., Minna, J., Nelson, P. G., and Nirenberg, M., 1972, Use of aminopterin in selecting electrically active neuroblastoma cells, Exp. Cell Res. 73:367–377.CrossRefGoogle Scholar
  246. Penit, J., Huot, J., and Jard, S., 1976, Neuroblastoma cell adenylate-cyclase: Direct activation by adenosine and Prostaglandins, J. Neurochem. 26:265–273.PubMedCrossRefGoogle Scholar
  247. Penit, J., Cantau, B., Huot, J., and Jard, S., 1977, Adenylate cyclase from synchronized neuroblastoma cells: Responsiveness to Prostaglandin E1, adenosine, and dopamine during the cell cycle, Proc. Natl. Acad. Sci. USA 74:1575–1579.PubMedCrossRefGoogle Scholar
  248. Pert, C. B., and Snyder, S. H., 1973, Opiate receptor: Demonstration in nervous tissue, Science 179:1011–1014.PubMedCrossRefGoogle Scholar
  249. Phelps, C. H., and Pfeiffer, S. E., 1973, Neurogenesis and the cell cycle, in: Results and Problems in Cell Differentiation, Vol. 7, pp. 62–83, Springer Verlag, Berlin.Google Scholar
  250. Prasad, K. N., 1971, Effect of dopamine and 6-hydroxydopamine on mouse neuroblastoma cells in vitro, Cancer Res. 31:1457–1460.PubMedGoogle Scholar
  251. Prasad, K. N., 1972a, Morphological differentiation induced by Prostaglandin in mouse neuroblastoma cells in culture, Nature [New Biol.] 236:49–52.Google Scholar
  252. Prasad, K. N., 1972b, Neuroblastoma clones: Prostaglandin versus dibutyryl cyclic AMP, 8-benzylthio-cyclic AMP, Phosphodiesterase inhibitors and X-rays, Proc. Soc. Exp. Biol. Med. 140:126–129.PubMedGoogle Scholar
  253. Prasad, K. N., 1972c, Inhibitors of cyclic nucleotide Phosphodiesterase induce morphological differentiation of mouse neuroblastoma cell culture, Exp. Cell Res. 73:436–440.PubMedCrossRefGoogle Scholar
  254. Prasad, K. N., 1974, Manganese inhibits adenylate cyclase activity and stimulates Phosphodiesterase activity in neuroblastoma cells: Its possible implication in manganese-poisoning, Exp. Neurol. 45:554–557.PubMedCrossRefGoogle Scholar
  255. Prasad, K. N., 1975, Differentiation of neuroblastoma cells in culture, Biol. Rev. 2:129–165.CrossRefGoogle Scholar
  256. Prasad, K. N., 1977, Role of cyclic nucleotide in the differentiation of nerve cells, in: Cell, Organ and Tissue Culture in Neurobiology (S. Fedorof and L. Hertz, eds.), pp. 448–483, Academic Press, New York.Google Scholar
  257. Prasad, K. N., and Hsie, A. W., 1971, Morphological differentiation of mouse neuroblastoma cells induced in-vitro by db-cAMP, Nature [New Biol.] 233:141–142.Google Scholar
  258. Prasad, K. N., and Kumar, S., 1973, Cyclic 3′, 5′-AMP Phosphodiesterase activity during cyclic AMP-induced differentiation of neuroblastoma cells in culture, Proc. Soc. Exp. Biol. Med. 142:406–409.PubMedGoogle Scholar
  259. Prasad, K. N., and Mandal, B., 1972, Catechol-O-methyl-transferase activity in dibutyryl cyclic AMP, Prostaglandin and X-ray-induced differentiated neuroblastoma cell culture, Exp. Cell Res. 74:532–534.PubMedCrossRefGoogle Scholar
  260. Prasad, K. N., and Mandal, B., 1973, Choline acetyltransferase level in cyclic AMP and X-ray induced morphologically differentiated neuroblastoma cells in culture, Cytobios 8:75–80.PubMedGoogle Scholar
  261. Prasad, K. N., and Sheppard, J. R., 1972a, Inhibitors of cyclic-nucleotide Phosphodiesterase induced morphological differentiation of mouse neuroblastoma cell culture, Exp. Cell Res 73:436–440.PubMedCrossRefGoogle Scholar
  262. Prasad, K. N., and Sheppard, J. R., 1972b, Neuroblastoma cell cultures: Membrane changes during cyclic AMP-induced morphological differentiation, Proc. Soc. Exp. Biol. Med. 141:240–243.PubMedGoogle Scholar
  263. Prasad, K. N., and Vernadakis, A., 1972, Morphological and biochemical study in X-ray and dibutyryl cyclic AMP-induced differentiated neuroblastoma cells, Exp. Cell Res. 70:27–32.PubMedCrossRefGoogle Scholar
  264. Prasad, K. N., Waymire, J. C., and Weiner, N., 1972, A further study on the morphology and biochemistry of X-ray and dibutyryl cyclic AMP-induced differentiated neuroblastoma cells in culture, Exp. Cell Res. 74:100–114.Google Scholar
  265. Prasad, K. N., Kumar, S., Gilmer, K., and Vernadakis, A., 1973a, cAMP induced differentiated neuroblastoma cells: Changes in total nucleic acid and protein contents, Biochem. Biophys. Res. Commun. 50:973–977.PubMedCrossRefGoogle Scholar
  266. Prasad, K. N., Mandal, B., and Kumar, S., 1973b, Human neuroblastoma cell culture: Effect of 5-BrdU on morphological differentiation and levels of neural enzymes, Proc. Soc. Exp. Biol. Med. 144:38–42.PubMedGoogle Scholar
  267. Prasad, K. N., Mandal, B., Waymire, J. C., Lees, G. J., Vernadakis, A., and Weiner, N., 1973c, Basal level of neurotransmitter synthesizing enzymes and effect of cyclic AMP agents on the morphological differentiation of isolated neuroblastoma clones, Nature [New Biol.] 241:117–119.Google Scholar
  268. Prasad, K. N., Gilmer, K. N., and Sahu, S. K., 1974, Demonstration of acetylcholine-sensitive adenyl cyclase in malignant neuroblastoma cells in culture, Nature 249:765–767.PubMedCrossRefGoogle Scholar
  269. Prasad, K. N., Becker, G., and Tripathy, K., 1975a, Differences and similarities between guanosine 3′, 5′-cyclic monophosphate Phosphodiesterase and adenosine 3′, 5′-cyclic monophosphate Phosphodiesterase activities in neuroblastoma cells in culture, Proc. Soc. Exp. Biol. Med. 149:757–762.PubMedGoogle Scholar
  270. Prasad, K. N., Bondy, S. C., and Purdy, J. L., 1975b, Polyadenylic acid-containing cytoplasmic RNA increases in X-irradiated neuroblastoma cells in culture, Radiat. Res. 62:585.Google Scholar
  271. Prasad, K. N., Bondy, S. C., and Purdy, J. L., 1975c, Polyadenylic acid-containing cytoplasmic RNA increases in adenosine 3′, 5′-cyclic monophosphate induced differentiation of neuroblastoma cells in culture, Exp. Cell Res. 94:88–94.PubMedCrossRefGoogle Scholar
  272. Prasad, K. N., Gilmer, K. N., Sahu, S. K., and Becker, G., 1975d, Regulation of adenylate cyclase activity in malignant and cyclic AMP-induced differentiated neuroblastoma cells: Effect of neurotransmitters, GTP and divalent ions, Cancer Res. 35:77–88.PubMedGoogle Scholar
  273. Prasad, K. N., Fogleman, D., Gaschler, M., Sinha, P. K., and Brown, J. L., 1976a, Cyclic nucleotide-dependent protein kinase activity in malignant and cyclic AMP-induced “differentiated” neuroblastoma cells in culture, Biochem. Biophys. Res. Commun. 68:1248–1255.PubMedCrossRefGoogle Scholar
  274. Prasad, K. N., Sahu, S. K., and Sinha, P. K., 1976b, Cyclic nucleotides in regulation of expression of differentiated functions in neuroblastoma cells, J. Natl. Cancer Inst. 57:619–631.PubMedGoogle Scholar
  275. Prasad, N., Rosenberg, R. N., Ulrich, C., Wischmeyer, B., and Sparkman, D., 1978, Induction of cytoplasmic cAMP receptor proteins and changes in the nuclear non-histone proteins by db-cAMP in differentiated mouse neuroblastoma cells, Fed. Proc. 37:1829.Google Scholar
  276. Puck, T. T., Marcus, P. I., and Cieciura, J., 1956, Clonal growth of mammalian cells in vitro, J. Exp. Med. 103:273–284.PubMedCrossRefGoogle Scholar
  277. Puro, D. G., and Nirenberg, M., 1976, On the specificity of synapse formation, Proc. Natl. Acad. Sci. USA 73:3544–3548.PubMedCrossRefGoogle Scholar
  278. Reiser, G., Heumann, R., Kemper, W., Lautenschlager, E., Hamprecht, B., 1977, Influence of cations on the electrical activity of neuroblastoma × glioma hybrid cells, Brain Res. 130:495–504.PubMedCrossRefGoogle Scholar
  279. Reuben, R. C., Wife, R. L., Breslow, R., Rifkind, R. A., and Marks, P., 1976, A new group of potent inducers of differentiation in murine erythroleukemia cells, Proc. Natl. Acad. Sci. USA 78:862–866.CrossRefGoogle Scholar
  280. Revoltella, R., Bertolini, L., and Pediconi, M., 1974a, Unmasking of nerve growth factor membrane-specific binding sites in synchronized murine C-1300 neuroblastoma cells, Exp. Cell Res. 85:89–94.PubMedCrossRefGoogle Scholar
  281. Revoltella, R., Bertolini, L., Pediconi, M., and Vigneti, E., 1974b, Specific binding of nerve growth factor (NGF) by murine C-1300 neuroblastoma cells, J. Exp. Med. 140:437–451.PubMedCrossRefGoogle Scholar
  282. Revoltella, R., Bosman, C., and Bertolini, L., 1975, Detection of nerve growth factor binding sites on neuroblastoma cells by rosette formation, Cancer Res. 35:890–985.PubMedGoogle Scholar
  283. Revoltella, R., Bertolini, L., Diamond. L., Vigneti, E., and Grasso, A., 1976, A radio-immunoassay for measuring 14-3-2 protein in cell extracts, J. Neurochem. 26:831–834.PubMedCrossRefGoogle Scholar
  284. Richelson, E., 1973a, Regulation of tyrosine hydroxylase activity in mouse neuroblastoma clone N1E-115, J. Neurochem. 21:1139–1145.PubMedCrossRefGoogle Scholar
  285. Richelson, E., 1973b, Stimulation of tyrosine hydroxylase activity in an adrenergic clone of mouse neuroblastoma by dibutyryl cyclic AMP, Nature [New Biol.] 242:175–177.Google Scholar
  286. Richelson, E., 1974, Studies on the transport of L-tyrosine into an adrenergic clone of mouse neuroblastoma, J. Biol. Chem. 249:6128–6224.Google Scholar
  287. Richelson, E., 1975, The culture of established clones for neurobiologic investigation, in: Metabolic Compartmentation and Neurotransmission (S. Berl, D. D. Clarke, and D. Schneider, eds.), pp. 305–326, Plenum Press, New York.CrossRefGoogle Scholar
  288. Richelson, E., 1976a, Properties of tyrosine hydroxylase in living mouse neuroblastoma clone N1E-115, J. Neurochem. 27:1113–1118.PubMedCrossRefGoogle Scholar
  289. Richelson, E., 1976b, Tissue culture of the nervous system: Applications in neurochemistry and psychopharmacology, in: Handbook of Psychopharmacology, Vol. 1 (L. L. Iverson, S. D. Iverson, and S. H. Snyder, eds.), pp. 101–135, Plenum Press, New York.Google Scholar
  290. Richelson, E., 1977, Antipsychotics block muscarinic acetylcholine receptor-mediated cyclic GMP formation in cultured mouse neuroblastoma cells, Nature 266:371–373.PubMedCrossRefGoogle Scholar
  291. Richelson, E., 1978a, Histamine, H1 receptor-mediated c-GMP formation by cultured mouse neuroblastoma cells, Science 201:69–71.PubMedCrossRefGoogle Scholar
  292. Richelson, E., 1978b, Desensitization of muscarinic receptor-mediated c-GMP formation by cultured nerve cells, Nature 272:366–368.PubMedCrossRefGoogle Scholar
  293. Richelson, E., and Divinetz-Romero, S., 1977, Blockade by psychotropic drugs of the muscarinic acetylcholine receptor in cultured nerve cells, Biol. Psychiatry 12:771–785.PubMedGoogle Scholar
  294. Richelson, E., and Thompson, E. J., 1973, Transport of neurotransmitter precursors into cultured cells, Nature [New Biol.] 241:201–204.Google Scholar
  295. Richelson, E., Prendergase, F. G., and Divinetz-Romero, S., 1978, Muscarinic receptor-mediated c-GMP formation by cultured nerve cells: Ionic dependence and effects of local anesthetics, Biochem. Pharmacol. 27:2039–2048.PubMedCrossRefGoogle Scholar
  296. Rieger, F., Faivre-Bauman, A., Benda, P., and Vigny, M., 1976, Molecular forms of acetylcholinesterase: Their de-novo synthesis in mouse neuroblastoma cells, J. Neurochem. 27:1059–1063.PubMedCrossRefGoogle Scholar
  297. Robinson, G. A., Butcher, R. W., and Sutherland, E. W., 1971, Cyclic AMP, Academic Press, New York.Google Scholar
  298. Roisen, F., Inczedy-Marcsek, M., Hsu, L., and Yorke, W., 1978, Myosin: Immunofluorescent localization in neuronal and glial cultures, Science 199:1445–1448.PubMedCrossRefGoogle Scholar
  299. Rosenberg, S. B., and Charalampous, F. C., 1977, Interaction of concanavalian A with differentiated and undifferentiated murine neuroblastoma cells, Arch Biochem. Biophys. 181:117–127.PubMedCrossRefGoogle Scholar
  300. Rosenberg, R. N., Vandeventer, L., DeFrancesco, L., and Friedkin, M. E., 1971, Regulation of the synthesis of choline-0-acetyltransferase and thymidylate synthetase in mouse neuroblastoma in cell culture, Proc. Natl. Acad. Sci. USA 68:1436–1440.PubMedCrossRefGoogle Scholar
  301. Ross, J., Granett, S., and Rosenbaum, J. L., 1973, Differentiation of neuroblastoma cells in hypertonic medium, J. Cell Biol. 59:291A.Google Scholar
  302. Ross, J., Olmsted, J. B., and Rosenbaum, J. L., 1975, The ultrastructure of mouse neuroblastoma cells in tissue culture, Tissue Cell 7:107–136.PubMedCrossRefGoogle Scholar
  303. Rotman, A., Daly, J. W., and Creveling, C. R., 1976a, Oxygen-dependent reaction of 6-hydroxydopamine, 5,6-dihydroxytryptamine and related compounds with proteins in vitro: A model for cytotoxicity, Mol. Pharmacol. 12:887–899.PubMedGoogle Scholar
  304. Rotman, A., Daly, J. W., Creveling, C. R., and Breakefield, X. O., 1976b, Uptake and binding of dopamine and 6-hydroxydopamine in murine neuroblastoma and fibroblast cells, Biochem. Pharmacol. 25:383–388.PubMedCrossRefGoogle Scholar
  305. Sahu, S. K., and Prasad, K. N., 1975, Effect of neurotransmitters and Prostaglandin E1 on cyclic AMP levels in various clones of neuroblastoma cells in culture, J. Neurochem. 24:1267–1269.PubMedCrossRefGoogle Scholar
  306. Sandquist, D., Williams, T. H., Sahu, S. K., and Kataoka, S., 1978, Morphological differentiation of a murine neuroblastoma clone in monolayer culture induced by dexamethasone, Exp. Cell Res. 113:375–381.PubMedCrossRefGoogle Scholar
  307. Sato, G., 1973, Tissue Culture of the Nervous System, Current Topics in Neurobiology, Vol. 1, Plenum Press, New York.Google Scholar
  308. Sato, G. H., 1975, The role of serum in cell culture, in: Biochemical Actions of Hormones, Vol. 3 (G. Litwack, ed.), pp. 391–395, Academic Press, New York.Google Scholar
  309. Schachner, M., 1973, Serologically demonstrable cell surface specificities on mouse neuroblastoma C-1300, Nature [New Biol.] 243:117–119.Google Scholar
  310. Schachner, R. M., and Worthan, K. A., 1975, Nervous system antigen-3 (NS-3) an antigenic cell surface component expressed on neuroblastoma C1300, Brain Res. 99:210–208.CrossRefGoogle Scholar
  311. Schmitt, H., 1976, Control of tubulin and actin synthesis and assembly during differentiation of neuroblastoma cells, Brain Res. 115:165–173.PubMedCrossRefGoogle Scholar
  312. Schneider, F. H., 1976, Effects of sodium butyrate on mouse neuroblastoma cells in culture, Biochem. Pharmacol. 25:2309–2317.PubMedCrossRefGoogle Scholar
  313. Schubert, D., 1974, Induced differentiation of clonal rat nerve and glial cells, Neurobiology 4:376–387.PubMedGoogle Scholar
  314. Schubert, D., 1979, Early events after the interaction of NGF with sympathetic nerve cells, Trends Neurosci. 2:17–20.CrossRefGoogle Scholar
  315. Schubert, D., and Jacob, F., 1970, 5-Bromodeoxyuridine-induced differentiation of a neuroblastoma, Proc. Natl. Acad. Sci. USA 67:247–254.PubMedCrossRefGoogle Scholar
  316. Schubert, D., and Klier, F. G., 1977, Storage and release of acetylcholine by a clonal line, Proc. Natl. Acad. Sci. USA 74:5184–5188.PubMedCrossRefGoogle Scholar
  317. Schubert, D., and Whitlock, C., 1977, Alteration of cellular adhesion by NGF, Proc. Natl. Acad. Sci. USA 74:4055–4058.PubMedCrossRefGoogle Scholar
  318. Schubert, D., Humphreys, S., Baroni, C., and Cohn, M., 1969, In-vitro differentiation of a mouse neuroblastoma, Proc. Natl. Acad. Sci. USA 64:316–323.PubMedCrossRefGoogle Scholar
  319. Schubert, D., Humphreys, S., Vitry, F. D. E., and Jacob, F., 1971a, Induced differentiation of a neuroblastoma, Dev. Biol. 25:514–546.PubMedCrossRefGoogle Scholar
  320. Schubert, D., Tarikas, H., Harris, A. J., and Heineman, S., 1971b, Induction of acetylcholinesterase activity in mouse neuroblastoma, Nature [New Biol.] 233:79–80.Google Scholar
  321. Schubert, D., Harris, A. J., Heinemann, S., Kidokoro, Y., Patrick, J., and Steinbach, J. H., 1973, Differentiation and interaction of clonal lines of nerve and muscle, in: Tissue Culture of the Nervous System (G. H. Sato, ed.), pp. 55–86, Plenum Press, New York.CrossRefGoogle Scholar
  322. Schubert, D., Heinemann, S., Carlisle, W., Tarikas, H., Kimes, B., Patrick, J., Steinbach, J. H., Culp, W., and Brandt, B. L., 1974, Clonal cell lines from rat central nervous system, Nature 249:224–227.PubMedCrossRefGoogle Scholar
  323. Schubert, D., Tarikas, H., and Lacorbiere, M., 1976, Neurotransmitter regulations of adenosine 3′, 5′-monophospate in clonal nerve, glia, and muscle cell lines, Science 192:471–473.PubMedCrossRefGoogle Scholar
  324. Shubert, D., Heinemann, S., and Kidokoro, Y., 1977a, Cholinergic metabolism and synapse formation by a rat nerve cell line. Proc. Natl. Acad. Sci. USA 74:2579–2583.CrossRefGoogle Scholar
  325. Schubert, D., Lacorbiere, M., Whitlcok, C., and Stallcup, W., 1978, Alterations in the surface properties of cells responsive to NGF, Nature 273:718–723.PubMedCrossRefGoogle Scholar
  326. Schultz, J., and Hamprecht, B., 1973, Adenosine 3′, 5′ monophosphate in cultured neuroblastoma cells: Effect of adenosine Phosphodiesterase inhibitors and benzazepines, Arch. Pharmacol. 278:215–225.CrossRefGoogle Scholar
  327. Schürch-Rathgeb, Y., and Monard, D., 1978, Brain development influences the appearence of glial factor-like activity in rat brain primary culture, Nature 273:308–309.PubMedCrossRefGoogle Scholar
  328. Seeds, N. W., Gilman, A. G., Amano, T., and Nirenberg, M., 1970, Regulation of axon formation by clonal lines of a neuronal tumor, Proc. Natl. Acad. Sci. USA 66:160–167.PubMedCrossRefGoogle Scholar
  329. Sharma, S. K., Nirenberg, M., and Klee, W. A., 1975a, Morphine receptors as regulators of adenylate cyclase activity, Proc. Natl. Acad. Sci. USA 72:590–594.PubMedCrossRefGoogle Scholar
  330. Sharma, S. K., Klee, W. A., and Nirenberg, M., 1975b, Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance, Proc. Natl. Acad. Sci. USA 72:3092–3096.PubMedCrossRefGoogle Scholar
  331. Sharma, S. K., Klee, W. A., and Nirenberg, M., 1977, Opiate-dependent modulation of adenylate cyclase, Proc. Natl Acad. Sci. USA 74:3365–3369.PubMedCrossRefGoogle Scholar
  332. Sidman, R. L., and Rakic, P., 1973, Neuronal migration with special reference to developing human brain. A review, Brain Res. 62:1–35.PubMedCrossRefGoogle Scholar
  333. Silagi, S., and Bruce, S. A., 1970, Suppression of malignancy and differentiation in melanotic melanoma cells, Proc. Natl. Acad. Sci. USA 66:72–78.PubMedCrossRefGoogle Scholar
  334. Siman, R. G., and Klein, W. L., 1979, Cholinergic activity regulates muscarinic receptors in central nervous system cultures, Proc. Natl. Acad. Sci. USA 76:4141–4145.PubMedCrossRefGoogle Scholar
  335. Siman-Tov, R., and Sachs, L., 1972, Enzyme Regulation in neuroblastoma cells, Selection of clones with low acetylcholinesterase activity and the independent control of acetylcholinesterase and choline-0-acetyltransferase, Eur. J. Biochem. 30:123–129.PubMedCrossRefGoogle Scholar
  336. Siman-Tov, R., and Sachs, L., 1973, Regulation of acetylcholine receptors in regulation of acetylcholinesterase in neuroblastoma cells, Proc. Natl. Acad. Sci. USA 70:2902–2905.CrossRefGoogle Scholar
  337. Siman-Tov, R., and Sachs, L., 1975a, Different mechanisms for induction of acetylcholinesterase in neuroblastoma cells, Dev. Biol. 45:382–385.CrossRefGoogle Scholar
  338. Siman-Tov, R., and Sachs, L., 1975b, Induction of polyadenylate Polymerase and differentiation in neuroblastoma cells, Eur. J. Biochem. 55:9–14.CrossRefGoogle Scholar
  339. Siman-Tov, R., and Sachs, L., 1975c, Temperature sensitivity of cAMP-binding protein activity of protein kinases and the regulation of cell growth, Eur. J. Biochem. 59:89–95.CrossRefGoogle Scholar
  340. Siman-Tov, R., and Snyder, S. H., 1976, Isolation and structure identification of a morphinelike peptide “enkephalin” in bovine brain, Life Sci. 18:781–788.CrossRefGoogle Scholar
  341. Simon, E. J., Hiller, J. M., and Edelman, I., 1973, Stereospecific binding of the potent narcotic analgesia [3H]etorphine to rat homogenate, Proc. Natl. Acad. Sci. USA 70:1947–1949.PubMedCrossRefGoogle Scholar
  342. Sinha, P. K., and Prasad, K. N., 1977, A further study on regulation of cyclic nucleotide Phosphodiesterase activity in neuroblastoma cells—Effect of growth, In Vitro 13:497–501.PubMedCrossRefGoogle Scholar
  343. Skaper, S. D., Adelson, G. L., and Seegmiller, J. E., 1976, Metabolism of biogenic amines in neuroblastoma and glioma cells in culture, J. Neurochem. 27:1065–1070.PubMedCrossRefGoogle Scholar
  344. Skolnick, P., and Daly, J. W., 1977, Regulation of cAMP formation in brain tissue by putative neurotransmitters, in: Cyclic Nucleotides: Mechanism of Action (H. Cramer and J. Schultz, eds.), John Wiley and Sons, New York.Google Scholar
  345. Snyder, S. H., and Siman-Tov, P., 1977, The opiate receptor and Opioid peptides, J. Neurochem. 28:13–20.PubMedCrossRefGoogle Scholar
  346. Snyder, S., Greenberg, D., and Yamamura, H. I., 1974, Antischizophrenic drugs and brain cholinergic receptors, Arch. Gen. Psychiat. 31:58–61.PubMedCrossRefGoogle Scholar
  347. Solomon, F., Monard, D., and Rentsch, M., 1973, Stabilization of colchicine-binding activity of neuroblastoma, J. Mol. Biol. 78:569–575.PubMedCrossRefGoogle Scholar
  348. Solomon, F., Gysin, R., Rentsch, M., and Monard, D., 1976, Purification of tubulin from neuroblastoma cells: Absence of covalently bound phosphate in tubulin from normal and morphologically differentiated cells, FEBS Lett. 63:316–319.PubMedCrossRefGoogle Scholar
  349. Spector, R., and Greene, L. A., 1977, Ascorbic acid transport by a clonal line of pheochromocytoma cells, Brain Res. 136:131–140.PubMedCrossRefGoogle Scholar
  350. Spector, I., Kimhi, Y., and Nelson, P. G., 1973, Tetrodotoxin and cobalt blockade of neuroblastoma action potentials, Nature [New Biol.] 246:124–126.Google Scholar
  351. Stefanovic, V., Ciesielski-Treska, J., Ebel, A., and Mandel, P., 1974a, Nucleoside triphosphatase activity at the external surface of neuroblastoma cells, Brain Res. 81:427–441.PubMedCrossRefGoogle Scholar
  352. Stefanovic, V., Ciesielski-Treska, J., Ebel, A., and Mandel, P., 1974b, Demonstration of an ATPase sensitive to ouabain on the external surface of the cells of neurobalstomas and of glial cells in culture, C. R. Acad. Sci. [D.] (Paris) 278:2041–2044.Google Scholar
  353. Stefanovic, V., Ciesielski-Treska, J., Ebel, A., and Mandel, P., 1974c, Ca2+-activated ATPase at the external surface of neuroblastoma cells in culture, FEBS Lett. 49:43–46.PubMedCrossRefGoogle Scholar
  354. Stefanovic, V., Mandel, P., and Rosenberg, A., 1975a, Activation of acetyl-and butyrylcholi-nesterase by enzymatic removal of sialic acid from intact neuroblastoma and astroblastoma cells in culture, Biochemistry 14:5257–5260.PubMedCrossRefGoogle Scholar
  355. Stevanovic, V., Massarelli, R., Mandel, P., and Rosenberg, A., 1975b, Effect of cellular desialylation on choline high affinity uptake and ecto-acetylcholinesterase activity of cholinergic neuroblasts, Biochem Pharmacol. 24:1923–1928.CrossRefGoogle Scholar
  356. Stefanovic, V., Ledig, M., and Mandel, P., 1976, Divalent cation-activated ecto-nucleoside triphosphatase activity of nervous system cells in tissue culture, J. Neurochem. 27:799–805.PubMedCrossRefGoogle Scholar
  357. Stefanovic, V., Ciesielski-Treska, J., and Mandel, P., 1977, Neuroblast-glia interaction in tissue culture as evidenced by the study of ectoenzymes. Ecto-ATPase activity of mouse neuroblastoma cells, Brain Res. 122:313–323.PubMedCrossRefGoogle Scholar
  358. Steinback, J. H., Harris, E. G., Patrick, G., Schubert, D., and Heineman, S., 1973, Nerve-muscle interaction in vitro: Role of acetylcholine, J. Gen. Physiol. 62:255–270.CrossRefGoogle Scholar
  359. Steinbach, J. H., Schubert, D., and Tarikas, H., 1974, Inhibition of acetylcholine synthesis in neuroblastoma cells by a styrylpyridine analog, J. Neurochem. 22:611–613.PubMedCrossRefGoogle Scholar
  360. Stoolmiller, A. C., Dawson, G., and Dorfman, A., 1973, The metabolism of glycosphingolipids and glycosaminoglycans, in: Tissue Culture of the Nervous System (G. H. Sato, ed.), pp. 247–280, Plenum Press, New York.CrossRefGoogle Scholar
  361. Suszkiw, J. B., Beach, R. L., and Pilar, G. R., 1976, Choline uptake by cholinergic neuron cell somas, J. Neurochem. 26:1123–1131.PubMedCrossRefGoogle Scholar
  362. Taylor, J. E., and Richelson, E., 1979, Desensitization of histamine H1 receptor-mediated cyclic GMP. Formation in mouse neuroblastoma cells, Mol. Pharmacol. 15:462–471.PubMedGoogle Scholar
  363. Thoenen, H., and Tranzer, J. P., 1968, Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-OHDA, Naunyn-Schmiedebergs Arch. Pharmakol. Exp. Pathol. 261:271–288.CrossRefGoogle Scholar
  364. Tishler, A. S., and Greene, L. A., 1978, Morphologic and cytochemical properties of a clonal line of rat adrenal pheochromocytoma cells which respond to NGF, Lab. Invest. 39:77–89.Google Scholar
  365. Traber, J., Fischer, K., Latzin, S., and Hamprecht, B., 1974a, Morphine antagonizes action of Prostaglandin in neuroblastoma cells but not of Prostaglandin and noradrenaline in glioma and glioma × fibroblast hybrid cells, FEBS Lett. 49:260–263.PubMedCrossRefGoogle Scholar
  366. Traber, J., Fischer, K., Latzin, S., and Hamprecht, B., 1974b, Cultures of cells derived from the nervous system: Synthesis and action of Prostaglandin E, in: Proceedings of the IX Congress of the Collegium International Neuropsychopharmacologium (O. Virai, Z. Votara, and P. B. Bradley, eds.), pp. 956–969, North-Holland, Amsterdam.Google Scholar
  367. Traber, J., Fischer, K., Latzin, S., and Hamprecht, B., 1975a, Morphine antagonizes action of Prostaglandin in neuroblastoma and neuroblastoma × glioma hybrid cells, Nature 253:120–122.PubMedCrossRefGoogle Scholar
  368. Traber, J., Reiser, G., Fischer, K., and Hamprecht, B., 1975b, Measurements of adenosine 3′, 5′ cyclic monophosphate and membrane potential in neuroblastoma × glioma hybrid cells—Opiates and adrenergic agonists cause effects opposite to those of Prostaglandin E1, FEBS Lett. 52:327–331.PubMedCrossRefGoogle Scholar
  369. Traber, J., Fischer, K., Buchen, C., and Hamprecht, B., 1975c, Muscarinic response to acetylcholine in neuroblastoma × glioma hybrid cells, Nature 255:558–560.PubMedCrossRefGoogle Scholar
  370. Traber, J., Glaser, T., Brandt, M., Klebensberger, W., and Hamprecht, B., 1977, Different receptors for somatostatin and Opioids in neuroblastoma × glioma hybrid cells, FEBS Lett. 81:351–354.PubMedCrossRefGoogle Scholar
  371. Trams, E. G., Lauter, C. J., and Banfield, W. G., 1976, On the activation of plasma membrane ecto-enzymes by treatment with neuraminidase, J. Neurochem. 27:1035–1042.PubMedCrossRefGoogle Scholar
  372. Truding, R., and Morell, P., 1977, Effect of N6, 02-dibutyryl adenosine 3′, 5′-monophosphate on the release of surface proteins by murine neuroblastoma cells, J. Biol. Chem. 252:4850–4854.PubMedGoogle Scholar
  373. Truding, R., Shelanski, M. L., Daniels, M. P., and Morell, P., 1974, Comparison of surface membranes isolated from cultured murine neuroblastoma cells in the differentiated or undifferentiated state, J. Biol. Chem. 249:3973–3982.PubMedGoogle Scholar
  374. Uzunov, P., and Weiss, B., 1972, Separation of multiple forms of cyclic adenosine 3′, 5′-monophosphate Phosphodiesterase in rat cerebellum by Polyacrylamide gel electrophoresis, Biochim. Biophys. Acta 284:220–226.PubMedGoogle Scholar
  375. Uzunov, P., Shein, H. M., and Weiss, B., 1974, Multiple forms of cyclic 3’, 5’ AMP Phosphodiesterase of rat cerebrum and cloned astrocytoma and neuroblastoma cells, Neuropharmacology 13:377–391.PubMedCrossRefGoogle Scholar
  376. Vimard, C., Jeantet, C., Netter, Y., and Gros, F., 1976, Changes in the sedimentation properties of acetylcholinesterase during neuroblastoma differentiation, Biochimie 58:473–478.PubMedCrossRefGoogle Scholar
  377. Wahlstrom, A., Brandt, M., Moroder, L., Wunsch, E., Lindeberg, G., Ragnarsson, U., Terenius, L., and Hamprecht, B., 1977, Peptides related to beta-lipotropin with Opioid activity—effects on levels of adenosine 3′, 5′ cyclic monophosphate in neuroblastoma × glioma hybrid cells, FEBS Lett. 77:28–32.PubMedCrossRefGoogle Scholar
  378. Warren, L., and Glick, M., 1969, Isolation of surface membranes of tissue culture cells, in: Fundamental Techniques in Virology (K. Habad and N. P. Salzman, eds.), pp. 66–71, Academic Press, New York.Google Scholar
  379. Warren, S., and Chute, R. N., 1972, Pheochromocytoma, Cancer 29:327–331.PubMedCrossRefGoogle Scholar
  380. Warter, S., Hermetet, J. C., and Cieselski-Treska, J., 1974, Cytogenetic characterization of C-1300 neuroblastoma cells, Experientia 30:291–292.PubMedCrossRefGoogle Scholar
  381. Waymire, J. C., and Gilmer-Waymire, K., 1978, Adrenergic enzymes in cultured mouse neuroblastoma: Absence of detectable aromatic-l-amino-acid decarboxylase, J. Neurochem. 31:693–698.PubMedCrossRefGoogle Scholar
  382. Waymire, J. C., Weiner, N., and Prasad, K. N., 1972, Regulation of tyrosine hydroxylase activity in cultured mouse neuroblastoma cells: Elevation induced by analogues of adenosine 3′, 5′ cyclic monophosphate, Proc. Natl. Acad. Sci. USA 69:2241–2245.PubMedCrossRefGoogle Scholar
  383. Waymire, J. C., Waymire, K. G., Boehme, R., Noritake, D., and Wardell, J., 1977, Regulation of tyrosine hydroxylase by cAMP in cultured neuroblastoma and cultured dissociated bovine adrenal chromaffin cells, in: Modern Pharmacology-Toxicology, Vol. 10, Conference on Structure and Function of Monoamine Enzymes (Usdin, Weiner, and Yaudim eds.), pp. 327–363, Marcel Dekker, Basel.Google Scholar
  384. Waymire, J. C., Gilmer-Waymire, K., and Boehme, R. E., 1978a, Concomitant elevation of tyrosine hydroxylase and dopamine β-hydroxylase by cAMP in cultured mouse neuroblastoma cells, J. Neurochem. 31:699–705.PubMedCrossRefGoogle Scholar
  385. Waymire, J. C., Gilmer-Waymire, K., Noritake, D., Kitayama, D., and Haycock, J. W., 1978b, Induction of tyrosine hydroxylase and dopamine β-hydroxylase in cultured mouse neuroblastoma by 8 Br-cAMP. Involvement of RNA and protein synthesis, Mol. Pharmacol. 15:78–85.Google Scholar
  386. Waymouth, C., 1977, Nutritional requirements of cells in culture with special reference to neural cells, in: Cell, Tissue and Organ Cultures in Neurobiology (S. Fedoroff and L. Hertz, eds.), pp. 631–648, Academic Press, New York.Google Scholar
  387. Wengler, G., and Wengler, G., 1972, Medium hypertonicity and polyribosome structure in HeLa cells. The influence of hypertonicity on the growth medium on polyribosomes in HeLa cells, Eur. J. Biochem. 27:162–173.PubMedCrossRefGoogle Scholar
  388. Wexler, B., and Katzmann, R., 1975, Effects of dibutyryl cyclic AMP on tyrosine uptake and metabolism in neuroblastoma cultures, Exp. Cell Res. 92:291–298.PubMedCrossRefGoogle Scholar
  389. Wigley, C. B., 1975, Differentiated cells in vitro, Differentiation 4:25–55.PubMedCrossRefGoogle Scholar
  390. Wilson, S. H., Schrier, B. K., Faber, J. L., Thompson, E. J., Rosenberg, R. N., Blume, A. J., and Nirenberg, N. W., 1972, Markers for gene expression in cultured cells from the nervous system, J. Biol. Chem. 247:3159–3169.PubMedGoogle Scholar
  391. Wilson, S., Higashida, H., Minna, J., and Nirenberg, M., 1978, Defects in synaptic formation and acetylcholine release by neuroblastoma and hybrid cell lines, Fed. Proc. 37:1784.Google Scholar
  392. Yamamura, H. I., and Snyder, S. H., 1973, High affinity transport of choline into synaptosomes of rat brain, J. Neurochem. 21:1355–1374.PubMedCrossRefGoogle Scholar
  393. Yamamura, H. I., and Snyder, S. H., 1974a, Muscarinic cholinergic binding in rat brain, Proc. Natl. Acad. Sci. USA 71:1725–1729.PubMedCrossRefGoogle Scholar
  394. Yamamura, H. I., and Snyder, S. H., 1974b, Muscarinic cholinergic receptor binding in the longitudinal muscle of the guinea pig ileum with 3H quinuclidinyl benzilate, Mol. Pharmacol. 10:861–867.Google Scholar
  395. Zornetzer, M. S., and Stein, G., 1975, Gene expression in mouse neuroblastoma cells; Properties of the genome, Proc. Natl. Acad. Sci. USA 72:3119–3123.PubMedCrossRefGoogle Scholar
  396. Zucco, F., Persico, M., Felsani, A., Metafora, S., and Augusti-Tocco, G., 1975, Regulation of protein synthesis at the translational level in neuroblastoma cells, Proc. Natl. Acad. Sci. USA 72:2289–2293.PubMedCrossRefGoogle Scholar
  397. Zwiller, J., Ciesielski-Treska, Mack, G., and Mandel, P., 1975, Uptake of noradrenaline by an adrenergic clone of neuroblastoma cells, Nature 254:443–444.PubMedCrossRefGoogle Scholar
  398. Zwiller, J., Goridis, C., Ciesielski-Treska, J., and Mandel, P., 1977, Cyclic GMP in neuroblastoma clones: Possible involvement in morphological differentiation induced by dibutyryl cyclic AMP, J. Neurochem. 29:273–278.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Yosef Kimhi
    • 1
  1. 1.Department of NeurobiologyThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations