Cardiac Muscle with Controlled Geometry

Application to Electrophysiological and Ion Transport Studies
  • Melvyn Lieberman
  • C. Russell Horres
  • Norikazu Shigeto
  • Lisa Ebihara
  • James F. Aiton
  • Edward A. Johnson


Heart cells in tissue culture have served as an experimental preparation for nearly 70 years (Burrows, 1912). However, the unique advantages of the preparations for physiological studies became evident after Moscona (1952) succeeded in using the proteolytic enzyme, trypsin, to obtain suspensions of embryonic cells. Isolated heart cells, contained within an appropriate culture medium, could then be introduced to glass or plastic substrates at densities sufficient to promote the formation of either monolayer or relatively thin multilayer preparations that were suitable for electrophysiological (Fänge et al., 1952; Crill et al., 1959) and ion-transport (Burrows and Lamb, 1962) studies. In 1954, a conference was held, jointly sponsored by the New York Academy of Sciences and the Tissue Culture Association, to explore the utilization of tissue culture in pharmacology (Pomerat, 1954). Although at the time, it was believed that tissue culture had much to offer the study of drug action, recognition was given to the fact that tissue culture was not yet amenable to quantitative determinations.


Cardiac Muscle Voltage Clamp Membrane Current Heart Cell Tracer Kinetic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashraf, M., and Bloor, C. M., 1976, X-ray microanalysis of mitochondrial deposits in ischemic myocardium. Virchows Archiv [Cell Pathol.] 22:287.Google Scholar
  2. Auclair, M. C., Adolphe, M., Moreno, G., and Salet, C., 1976, Comparison of the effects of potassium cyanide and hypoxia on ultrastructure and electrical activity of cultured rat myoblasts, Toxicol. Appl. Pharmacol. 37:387.PubMedCrossRefGoogle Scholar
  3. Burrows, M. T., 1912, Rhythmische Kontraktionen der isolierten Herzmuskelzellen ausserhalb des Organismus, Münch. Med. Wochenschr. 59:1473.Google Scholar
  4. Burrows, R., and Lamb, J. F., 1962, Sodium and potassium fluxes in cells cultured from chick embryo heart cells, J. Physiol. (Lond.) 162:510.Google Scholar
  5. Carmeliet, E. E., Horres, C. R., Lieberman, M., and Vereecke, J. S., 1976, Developmental aspects of potassium flux and permeability of the embryonic chick heart, J. Physiol. (Lond.) 254:673.Google Scholar
  6. Chapman, J. B., and Johnson, E. A., 1976, Current-voltage relationships for theoretical electrogenic sodium pump models, Proc. Aust. Physiol. Soc. 7:69.Google Scholar
  7. Chapman, J. B., Kootsey, J. M., and Johnson, E. A., 1979, A kinetic model for determining the consequences of electrogenic active transport in cardiac muscle, J. Theor. Biol. 80:405.PubMedCrossRefGoogle Scholar
  8. Coraboeuf, E., Delahayes, J., and Sjöstrand, 1969, A comparative study of K42 and Na24 movements during the cardiac cycle, Acta Physiol. Scand. 76:40.PubMedCrossRefGoogle Scholar
  9. Crill, W. E., Rummery, R. E., and Woodbury, J. W., 1959, Effects of membrane current on transmembrane potentials of cultured chick embryo heart cells, Am. J. Physiol. 197:733.Google Scholar
  10. deBarry, J., Fosset, M., and Lazdunski, M., 1977, Molecular mechanism of the cardiotoxic action of a Polypeptide neurotoxin from sea anemone on cultured embryonic cardiac cells, Biochemistry 16:3850.CrossRefGoogle Scholar
  11. DeHaan, R. L., and Fozzard, J. A., 1975, Membrane response to current pulses in spheroidal aggregates of embryonic heart cells, J. Gen. Physiol. 65:207.PubMedCrossRefGoogle Scholar
  12. Ebihara, L., Shigeto, N., Lieberman, M., and Johnson, E. A., 1980, The initial inward current in spherical clusters of chick embryonic heart cells, J. Gen. Physiol. 75:437.PubMedCrossRefGoogle Scholar
  13. Eisenberg, B. R., Kuda, A. M., and Peter, J. B., 1974, Stereological analysis of mammalian skeletal muscle. I. Soleus muscle of the adult guinea pig, J. Cell Biol. 60:732.PubMedCrossRefGoogle Scholar
  14. Eisenberg, R. S., and Engel, E., 1970, The spatial variation of membrane potential near a small source of current in a spherical cell, J. Gen. Physiol. 55:736.PubMedCrossRefGoogle Scholar
  15. Fänge, R., Persson, H., and Thesleff, S., 1956, Electrophysiologic and pharmacological observations of trypsin-disintegrated embryonic chick hearts cultured in vitro, Acta Physiol. Scand. 38:173.PubMedCrossRefGoogle Scholar
  16. Fischman, D. A., and Moscona, A. A., 1971, Reconstruction of heart tissue from suspensions of embryonic myocardial cells: Ultrastructural studies on dispersed and reaggregated cells, in: Cardiac Hypertrophy (N. Alpert, ed.), pp. 125–139, Academic Press, New York.Google Scholar
  17. Galper, J. B., and Catterall, W. A., 1978, Developmental changes in the sensitivity of embryonic heart cells to tetrodotoxin and D600, Dev. Biol. 65:216.PubMedCrossRefGoogle Scholar
  18. Ganote, C. E., Seabra-Gomes, R., Nayler, W. G., and Jennings, R. B., 1975, Irreversible myocardial injury in anoxic perfused rat hearts, Am. J. Pathol. 80:419.PubMedGoogle Scholar
  19. Goldman, Y., and Morad, M., 1977, Ionic membrane conductance during the time course of the cardiac action potential, J. Physiol. (Lond.) 268:655.Google Scholar
  20. Graves, J. S., 1979, Potassium transport in Chinese hamster ovary cells: Comparison of Rb-86 and K-42 as tracers, J. Cell. Biol. 83:294.Google Scholar
  21. Horres, C. R., Aiton, J. F., and Lieberman, M., 1979, Potassium permeability of embryonic avian heart cells in tissue culture, Am. J. Physiol. 236:C163.PubMedGoogle Scholar
  22. Horres, C. R., Aiton, J. F., Lieberman, M., and Johnson, E. A., 1979, Electrogenic transport in tissue cultured heart cells, J. Mol. Cell Cardiol. 11:1201.PubMedCrossRefGoogle Scholar
  23. Horres, C. R., and Lieberman, M., 1977, Compartmental analysis of potassium efflux from growth-oriented heart cells, J. Membr. Biol. 34:331.PubMedCrossRefGoogle Scholar
  24. Horres, C. R., Lieberman, M., and Purdy, J. E., 1977, Growth orientation of heart cells on nylon monofilament: Determination of the volume-to-surface area ratio and intracellular potassium concentration, J. Membr. Biol. 34:313.PubMedCrossRefGoogle Scholar
  25. Hyde, A., Blondel, B., Matter, A., Cheneval, J. P., Filloux, B., and Girardier, L., 1969, Homo and heterocellular junctions in cell cultures: An electrophysiological and morphological study, in: Progress in Brain Research, Vol. 31 (K. Akert and P. G. Waser, eds.), pp. 283–311, Elsevier, Amsterdam.Google Scholar
  26. Johnson, E. A., and Lieberman, M., 1971, Heart: Excitation and contraction, Annu. Rev. Physiol. 33:479.PubMedCrossRefGoogle Scholar
  27. Jones, A. W., 1975, Analysis of bulk-diffusion limited exchange of ions in smooth muscle preparations, in: Methods in Pharmacology, Vol. 3 (E. E. Daniel and D. M. Paton, eds.), pp. 673–698, Plenum Press, New York.Google Scholar
  28. Jongsma, H. J., and van Rijn, H. E., 1972, Electrotonic spread of current in monolayer cultures of neonatal rat heart cells, J. Membr. Biol. 9:341.PubMedCrossRefGoogle Scholar
  29. Juncker, D. F., Greene, E. A., and Stish, R., 1972, Potassium efflux from amphibian atrium during the cardiac cycle, Circ. Res. 30:350.PubMedGoogle Scholar
  30. Kass, R. S., and Tsien, R. W., 1976, Control of action potential duration by calcium ions in cardiac Purkinje fibers, J. Gen. Physiol. 67:599.PubMedCrossRefGoogle Scholar
  31. Katz, G. M., and Schwartz, T. S., 1974, Temporal control of voltage clamp membranes: An examination of principles, J. Membr. Biol. 17:275.PubMedCrossRefGoogle Scholar
  32. Keynes, R. D., 1954, The ionic fluxes in muscle, Proc. R. Soc. London [Biol.] 142:359.CrossRefGoogle Scholar
  33. Kobayashi, T., Ito, Y., and Rona, G., 1978, Cardiac Adaptation, Recent Advances in Studies on Cardiac Structure and Metabolism, Vol. 12, University Park Press, Baltimore.Google Scholar
  34. Kootsey, J. M., 1975, Voltage clamp simulation, Fed. Proc. 34:1343.PubMedGoogle Scholar
  35. Kootsey, J. M., Vereecke, J., Shigeto, N., Lieberman, M., and Johnson, E. A., 1975, Deciphering nonlinear membranes: Distortion from cable length, Biophys. J. 15:257a.Google Scholar
  36. Lieberman, M., 1973, Electrophysiological studies of a synthetic strand of cardiac muscle, Physiologist 16:551.PubMedGoogle Scholar
  37. Lieberman, M., and Sano, T., 1976, Developmental and Physiological Correlates of Cardiac Muscle, Raven Press, New York.Google Scholar
  38. Lieberman, M., Roggeveen, A. E., Purdy, J. E., and Johnson, E. A., 1972, Synthetic strands of cardiac muscle: Growth and physiological implication, Science 175:909.PubMedCrossRefGoogle Scholar
  39. Lieberman, M., Horres, C. R., Purdy, J. E., and Halperin, L. R., 1978, Development of electrical activity in embryonic myocardial cells, in: Fetal and Newborn Cardiovascular Physiology, Vol. 1, Developmental Aspects (L. D. Longo and D. D. Reneau, eds.), pp. 237–255, Garland Press, New York.Google Scholar
  40. Lieberman, M., Sawanobori, T., Kootsey, J. M., and Johnson, E. A., 1975, A synthetic strand of cardiac muscle: Its passive electrical properties, J. Gen. Physiol. 65:527.PubMedCrossRefGoogle Scholar
  41. Lieberman, M., Sawanobori, T., Shigeto, N., and Johnson, E. A., 1976, Physiologic implications of heart muscle in tissue culture, in: Developmental and Physiological Correlates of Cardiac Muscle (M. Lieberman and T. Sano, eds.), pp. 139–154, Raven Press, New York.Google Scholar
  42. Lieberman, M., Shigeto, N., Kootsey, J. M., and Johnson, E. A., 1975, Ionic currents in cardiac muscle, Fed. Proc. 34:391.Google Scholar
  43. Lipton, B. H., 1977, A fine-structural analysis of normal and modulated cells in myogenic cultures, Dev. Biol. 60:26.PubMedCrossRefGoogle Scholar
  44. MacDonald, R. L., Mann, J. E., Jr., and Sperelakis, N., 1974, Derivation of general equations describing tracer diffusion in any two-compartment tissue with application to ionic diffusion in cylindrical muscle bundles, J. Theor. Biol. 45:107.PubMedCrossRefGoogle Scholar
  45. McCall, D., 1979, Cation exchange and glycoside binding in cultured rat heart cells, Am. J. Physiol. 236:C87.PubMedGoogle Scholar
  46. McLean, M. J., and Sperelakis, N., 1976, Retention of fully differentiated electrophysiological properties of chick embryonic heart cells in culture, Dev. Biol. 50:134.PubMedCrossRefGoogle Scholar
  47. McLean, M. J., and Sperelakis, N., 1974, Rapid loss of sensitivity to tetrodotoxin by chick ventricular myocardial cells after separation from the heart, Exp. Cell Res. 86:351.PubMedCrossRefGoogle Scholar
  48. Mobley, B. A., and Page, E., 1972, The surface area of sheep cardiac Purkinje fibres, J. Physiol. (Lond.) 220:547.Google Scholar
  49. Moscona, A., 1952, Cell suspensions from organ rudiments of chick embryos, Exp. Cell Res. 3:535.CrossRefGoogle Scholar
  50. Müller, P., 1965, Potassium and rubidium exchange across the surface membrane of cardiac Purkinje fibres, J. Physiol. (Lond.) 177:453.Google Scholar
  51. Noble, D., 1962, The voltage dependence of the cardiac membrane conductance, Biophys. J. 2:381.PubMedCrossRefGoogle Scholar
  52. Noble, D., 1966, Applications of Hodgkin-Huxley equations to excitable tissues, Physiol. Rev. 46:1.PubMedGoogle Scholar
  53. Noble, D., and Stein, R. B., 1966, The threshold conditions for initiation of action potentials by excitable cells, J. Physiol. (Lond.) 187:129.Google Scholar
  54. Noble, D., and Tsien, R. W., 1972, The repolarization process of heart cells, in: Electrical Phenomena in the Heart (W. C. de Mello, ed.), pp. 133–161, Academic Press, New York.Google Scholar
  55. Noma, A., and Irisawa, H., 1976, Membrane currents in the rabbit sinoatrial node cell as studied by the double microelectrode method, Pflügers Arch. 364:45.PubMedCrossRefGoogle Scholar
  56. Polimeni, P. I., and Vassalle, M., 1970, Potassium fluxes in Purkinje and ventricular muscle fibers during rest and activity, Am. J. Physiol. 218:1381.PubMedGoogle Scholar
  57. Pomerat, C. M., 1954, Tissue culture technique in pharmacology, Ann. N.Y. Acad. Sci. 58:971.Google Scholar
  58. Purdy, J. E., Lieberman, M., Roggeveen, A. E., and Kirk R. G., 1972, Synthetic strands of cardiac muscle: Formation and ultrastructure, J. Cell Biol. 55:563.PubMedCrossRefGoogle Scholar
  59. Reuter, H., and Seitz, N., 1968, The dependence of calcium efflux from cardiac muscle on temperature and external ion composition, J. Physiol. (Lond.) 195:451.Google Scholar
  60. Sachs, F., 1976, Electrophysiological properties of tissue cultured heart cells grown in a linear array, J. Membr. Biol. 28:373.PubMedCrossRefGoogle Scholar
  61. Sachs, H. G., and DeHaan, R. L., 1973, Embryonic myocardial cell aggregates: Volume and pulsation rate, Dev. Biol. 30:233.PubMedCrossRefGoogle Scholar
  62. Sperelakis, N., 1978, Cultured heart cell reaggregate model for studying cardiac toxicology, Environ. Health Perspect. 26:243.PubMedCrossRefGoogle Scholar
  63. Trump, B. F., and Jones, R. T., 1977, Correlation of structure and active transport in the teleost nephron, J. Exp. Zool. 199:365.PubMedCrossRefGoogle Scholar
  64. Trump, B. F., Mergner, W. J., Kahng, M. W., and Saladine, A. J., 1976, Studies on the subcellular pathophysiology of ischemia, Circulation 53:117.Google Scholar
  65. van Zwieten, P. A., 1968, The use of 86rubidium for the determination of changes in membrane permeability in the guinea pig atrail tissue, Pflügers Arch. 303:81.PubMedCrossRefGoogle Scholar
  66. Weibel, E. R., 1973, Stereological techniques for electron microscopic morphometry, in: Principles and Techniques of Electron Microscopy: Biological Applications (M. A. Hayat, ed.), pp. 239–296, Van Nostrand Rheinhold Co., New York.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Melvyn Lieberman
    • 1
  • C. Russell Horres
    • 1
  • Norikazu Shigeto
    • 1
  • Lisa Ebihara
    • 1
  • James F. Aiton
    • 1
  • Edward A. Johnson
    • 1
  1. 1.Department of PhysiologyDuke University Medical CenterDurhamUSA

Personalised recommendations