Advertisement

Halomethanes (other than those listed elsewhere)

  • Brian S. Middleditch
  • Stephen R. Missler
  • Harry B. Hines

Abstract

Bromoform, dibromochloromethane, bromodichloromethane, dichlorodifluoro-methane, bromomethane, chloromethane, methylene chloride, and trichloro-fluoromethane are the compounds listed in this category. Carbon tetrachloride and chloroform are listed separately.

Keywords

Methyl Bromide Hydro Sulfide Soil Fumigant Organohalogen Compound Unimolecular Dissociation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliography

  1. Volatile halogen compounds in the alga Asparagopsis taxiformis (Rhodophyta), Burreson, B. J., Moore, R. E., Roller, P. P., J.Agric. Food Chem., 24(4), 856–861 (1976).CrossRefGoogle Scholar
  2. Mass spectrometry determination of thermochemical data of tribromomethane and tetra-bromomethane by study of their electron impact and heterogeneous pyrolytic decompositions, Kaposi, O., Riedel, M., Vass-Balthazar, K., Sanchez, G. R., Lelik, L., Acta Chim. Acad. Sci. Hung., 89(3), 221–244 (1976).Google Scholar
  3. Determination of the thermochemical data of tribromomethane and tetrabromomethane by mass spectrometry, investigating the electron-impact and heterogeneous pyrolytic decomposition, Kaposi, O., Riedel, M., Balthazar-Vass, K., Sanchez, R. G., Lelik, L., Magy. Kern. Foly., 82(4), 155–166 (1976).Google Scholar
  4. Direct aqueous injection gas chromatography-mass spectrometry for analysis of organo-halides in water at concentrations below the parts per billion level, Fujii, T., J.Chrom-matogr., 139(2), 297–302 (1977).CrossRefGoogle Scholar
  5. Mass spectrometric identification of radicals originating from heterogeneous pyrolytic decomposition of bromomethanes, Lelik, L., Keszei, E.,Magy. Kern. Lapja, 32(11), 619–624 (1977).Google Scholar
  6. Volatile halogen compounds in the alga Asparagopsis taxiformis (Rhodophyta), Buireson, B. J., Moore, R. E., Roller, P. P., J.Agric. Food Chem., 24(4), 856–861 (1976).CrossRefGoogle Scholar
  7. The determination of traces of organohalogen compounds in aqueous solution by direct injection gas chromatography-mass spectrometry and single ion detection, Fujii, T., Anal Chim. Acta, 92(1), 117–122 (1977).CrossRefGoogle Scholar
  8. Direct aqueous injection gas chromatography-mass spectrometry for analysis of organohalides in water at concentrations below the parts per billion level, Fujii, T., J.Chromatogr., 139(2), 297–302 (1977).CrossRefGoogle Scholar
  9. The determination of traces of organohalogen compounds in aqueous solution by direct injection gas chromatography-mass spectrometry and single ion detection, Fujii, T., Anal Chim. Acta, 92(1), 117–122 (1977)CrossRefGoogle Scholar
  10. Direct aqueous injection gas chromatography-mass spectrometry for analysis of organo halides in water at concentrations below the parts per billion level, Fujii, T., J.Chromatogr., 139(2), 297–302 (1977).CrossRefGoogle Scholar
  11. Mass spectrometry study of fluorochloro-substituted ethylenes, Syrvatka, B. G., GiFburd, M. M., Berferraan, A. L., Zh. Org. Khim., 8(8), 1553–1557 (1972).Google Scholar
  12. Mass spectral intensities of inorganic fluorine-containing compounds, Beattie, W. H., Appl. Spectrosc, 29(4), 334–337 (1975).CrossRefGoogle Scholar
  13. Multiple pollutant monitoring using spectroscopic gas-chromatographic methods in a mobile laboratory, Hollingdale-Smith, P. A., Proc. Anal. Div. Chem. Soc., 12(12), 317–319 (1975).Google Scholar
  14. Chlorinated hydrocarbons in the atmosphere. Analysis at the parts-per-trillion level by GC-MS (gas chromatography-mass spectrometry), Tyson, B. J., Anal Lett., 8(11), 807–813 (1975).CrossRefGoogle Scholar
  15. Terminal ions in weak atmospheric pressure plasmas. Applications of atmospheric pressure ionization to trace impurity analysis in gases, Siegel, M. W., Fite, W. L., J.Phys. Chem, 80(26), 2871–2881 (1976).CrossRefGoogle Scholar
  16. Fragmentation mechanisms in methyl X (X = amine, hydroxide, hydrosulfide, chloride, bromide, and iodide) interpreted by the molecular orbital method, Acuta, S., Yoshihara, K., Shiokawa, T., Shitsuryo Bunseki, 22(4), 233–238 (1974).Google Scholar
  17. Mass spectrometric investigations on the electron impact and heterogeneous pyrolytic decomposition of methyl bromide, Kaposi, O., Riedel, M., Sanchez, G. R., Magy. Kern. Foly., 80(9), 419–428 (1974).Google Scholar
  18. Mass spectrometric study of electron impact and heterogeneous pyrolytic decomposition of methyl bromide, Kaposi, O., Riedel, M., Sanchez, G. R., Acta Chim. Acad. Sci. Hung., 85(4), 361–382 (1975).Google Scholar
  19. Unimolecular dissociations and internal conversions of methyl halide ions, Eland, J. H. D., Frey, R., Kuestler, A., Schulte, H., Brehm, B., Int. J. Mass Spectrom. Ion Phys., 22(1–2), 155–170 (1976).Google Scholar
  20. Capacitive integration to produce high precision isotope ratio measurements on methyl chloride and methyl bromide samples, Willey, J. F., Taylor, J. W., Anal. Chem., 50(13), 1930–1933 (1978).CrossRefGoogle Scholar
  21. Fragmentation mechanisms in methyl X (X = amine, hydroxide, hydrosulfide, chloride, bromide, and iodide) interpreted by the molecular orbital method, Ikuta, S., Yoshihara, K., Shiokawa, T., Shitmryo Bunseki, 22(4), 233–238 (1974).Google Scholar
  22. Photoionization study of the ionization potentials and fragmentation paths of the chlorinated methanes and carbon tetrabromide, Werner, A. S., Tsai, B. P., Baer, T., J.Chem. Phys., 60(9), 3650–3657 (1974).CrossRefGoogle Scholar
  23. Unimolecular dissociations and internal conversions of methyl halide ions, Eland, J. H. D., Frey, R., Kuestler, A., Schulte, H., Brehm, B., Int. J. Mass Spectrom. Ion Phys., 22(1–2), 155–170 (1976).Google Scholar
  24. Kinetic energies of fragment ions from some hydrocarbons and organic halides in a modified mass spectrometer, Ossinger, A. I., Weiner, E. R.,J.Chem. Phys., 65(7), 2892–2900 (1976).CrossRefGoogle Scholar
  25. Capacitive integration to produce high precision isotope ratio measurements on methyl chloride and methyl bromide samples, Willey, J. F., Taylor, J. W., Anal Chem., 50(13), 1930–1933 (1978).CrossRefGoogle Scholar
  26. Mass spectrometry analysis of product water from coal gasification, Schmidt, C. E., Sharkey, A. G., Jr., Friedel, R. A., U.S. Bur. Mines, Tech. Prog. Rep., (TPR 86), 7 pp. (1974).Google Scholar
  27. Photoionization study of the ionization potentials and fragmentation paths of the chlorinated methanes and carbon tetrabromide, Werner, A. S., Tsai, B. P., Baer, T., J.Chem. Phys., 60(9), 3650–3657 (1974).CrossRefGoogle Scholar
  28. Volatile flavor components of leek, Schreyen, L., Dirinck, P., Van Wassenhove, F., Schamp, N., J. Agric. Food Chem., 24(2), 336–341 (1976).CrossRefGoogle Scholar
  29. Direct aqueous injection gas chromatography-mass spectrometry for analysis of organo-halides in water at concentrations below the parts per billion level, Fujii, T., J.Chromatogr., 139(2), 297–302 (1977).CrossRefGoogle Scholar
  30. Concentration and analysis of trace impurities in styrene monomer, Zlatkis, A., Anderson, J. W., Hölzer, G., J. Chromatogr., 142, 127–129 (1977).CrossRefGoogle Scholar
  31. Chlorinated hydrocarbons in the atmosphere. Analysis at the parts-per-trillion level by GC-MS (gas chromatography-mass spectrometry), Tyson, B. J., Anal Lett., 8(11), SOT-SIS (1975).Google Scholar
  32. Terminal ions in weak atmospheric pressure plasmas. Applications of atmospheric pressure ionization to trace impurity analysis in gases, Siegel, M. W., Fite, W. L., J.Phys. Chem., 80(26), 2871–2881 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Brian S. Middleditch
    • 1
  • Stephen R. Missler
    • 1
  • Harry B. Hines
    • 1
  1. 1.University of HoustonHoustonUSA

Personalised recommendations