Advertisement

Electrolytic Refining and Winning of Metals

  • V. A. Ettel
  • B. V. Tilak
Part of the Comprehensive Treatise of Electrochemistry book series (volume 2)

Abstract

In electrolytic refining, the plates of crude metal are anodically dissolved in a suitable electrolyte, while “pure” metal is deposited on the adjacent cathodes. The electrorefining process was introduced about a hundred years ago to produce a substitute to fire-refined copper. Today, practically all of the world’s copper production (~8,000,000 metric tons/year) is electrorefined, constituting by far the largest electrolytic refining industry. Much smaller, but also important, are the electrolytic refining industries producing lead, nickel, silver, and other minor metals.

Keywords

Current Efficiency Cell Voltage Leach Liquor Anode Slime Zinc Electrowinning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Boldt, Jr., The Winning of Nickel, Longmans Canada Ltd., Toronto (1967).Google Scholar
  2. 2.
    M. J. Nicol and H. I. Philip, Underpotential deposition and its relation to the anomalous deposition of metals in alloys, J. Electroanal. Chem. 70, 233 (1976).CrossRefGoogle Scholar
  3. 3.
    T. N. Andersen, R. D. Budd, and R. W. Strachan, A rapid electrochemical method for measuring the concentration of active glue in copper refinery electrolyte which contains thiourea, Met. Trans. B 7B, 333 (1976).CrossRefGoogle Scholar
  4. 4.
    V. A. Mukhin and A. I. Levin, The Effect of the Chloride Ion on the Quality of Electrolytic Copper, Tsvetn. Metal. 37 (11), 36 (1964).Google Scholar
  5. 5.
    C. W. Dichrodt and J. H. Schloen, Electrolytic copper refining, in Copper—Science and Technology of the Metal, Its Alloys, and its Compounds, A. Butts, ed., Hafner, New York (1959), Chap. 8, p. 165.Google Scholar
  6. 6.
    C. J. Krauss, Cathode deposit control in lead electrorefining, J. Met. 28(11), 4 (1976).Google Scholar
  7. 7.
    J. O’M. Bockris and G. A. Razumney, Fundamental Aspects of Electrocrystallization, Plenum, New York (1967).CrossRefGoogle Scholar
  8. 8.
    M. G. Fouad and N. Ibl, Natural convection mass transfer at vertical electrodes under turbulent flow conditions, Electrochim. Acta 3, 233 (1960).CrossRefGoogle Scholar
  9. 9.
    U. Landau and J. Osterwald, Formation of grooves in copper cathodes in electrorefining, Erzmetall 29 (3), 103 (1976).Google Scholar
  10. 10.
    V. A. Ettel and A. S. Gendron, The role of mass transfer in designing electrowinning cells, Chem. Ind. (London), No. 9, 376 (May 3, 1975 ).Google Scholar
  11. 11.
    S. Abe, B. W. Burrows, and V. A. Ettel, Anode passivation in copper refining, paper presented at the Annual AIME Meeting, Atlanta, March, 1977.Google Scholar
  12. 12.
    N. Ibl, Optimization of copper refining, Electrochim. Acta 22, 465 (1977).CrossRefGoogle Scholar
  13. 13.
    J. R. Rawling and L. D. Costello, Mixing characteristics of a copper refinery tankhouse cell, J. Met. 21 (5), 49 (1969).Google Scholar
  14. 14.
    M. G. Fouad and G. H. Sedahmed, Effect of gas evolution on the rate of mass transfer at vertical electrodes, Electrochim. Acta 17, 665 (1972).CrossRefGoogle Scholar
  15. 15.
    N. Ibl, R. Kind, and E. Adam, Mass transfer at electrodes with gas stirring, An. Quim. 71, 1008 (1975).Google Scholar
  16. 16.
    A. Kapanen, R. Rantanen, and T. Mäntymäki, Recent trends of mechanization in copper refining at Outokumpu Oy., in Extractive Metallurgy of Copper, Vol. 1, J. C. Yannopoulos and J. C. Agarwal, eds., AIME, New York (1976), Chap. 8, p. 554.Google Scholar
  17. 17.
    H. Ikeda and Y. Matsubara, No. 3 tankhouse at the Onahama smelter and refinery, Extractive Metallurgy of Copper, Vol. 1, J. C. Yannopoulos and J. C. Agarwal, eds., AIME, New York (1976), Chap. 30, p. 588.Google Scholar
  18. 18.
    A. S. Gendron, V. A. Ettel, and S. Abe, Effect of cobalt added to electrolyte on corrosion rate of lead–antimony anodes in copper electrowinning, Can. Metall. Q. 14 (1), 59 (1975).Google Scholar
  19. 19.
    T. N. Andersen, D. L. Adamson, and K. J. Richards, Corrosion of lead anodes in copper electrowinning, Met. Trans. 5, 1345 (1974).CrossRefGoogle Scholar
  20. 20.
    Outokumpu Nickel Production, Outokumpu News, Outokumpu Oy., Helsinki, No. 2, 1967.Google Scholar
  21. 21.
    G. M. Meisel, New generation zinc plants, design features, and effect on costs, J. Met. 26 (8), 25 (1974).Google Scholar
  22. 22.
    E. M. Elkin, Electrodeposition of strippable metal coatings and compositions and articles useful therefore, U.S. Patent 3,523, 873 (1970).Google Scholar
  23. 23.
    B. H. Spoon, Cathode for electrolytic refining of metal, such as copper, U.S. Patent 3,661, 756 (1972).Google Scholar
  24. 24.
    E. Nomura, M. Aramaki, and Y. Nishimura, Electrolytic lead refining with large cell and its mechanization at Takehara refinery, paper presented at 103rd AIME Meeting, 1974.Google Scholar
  25. 25.
    Copper Electrowinning Plant for Union-Corp., S.A. Min. Eng. J., 157 (July 1969).Google Scholar
  26. 26.
    F. T. Bennell, Thyristors or Copper Refining, Chem. Ind. (London), No. 4, 141 (February 19, 1977 ).Google Scholar
  27. 27.
    T. Kitamura, T. Kawakita, Y. Sakoh, and K. Sasaki, Design, construction, and operation of periodic reverse current process at Tamano, in Extractive Metallurgy of Copper, Vol. 1, J. C. Yannopoulos and J. C. Agarwal, eds., AIME, New York (1976), Chap. 26, p. 525.Google Scholar
  28. 28.
    P. J. Mackey, P. Tarassoff, and G. Lemelin, Current distribution and resistances in copper refinery tankhouse cells, Inst. Min. Metall. Trans. Sec. C, 84, C42 (1975).Google Scholar
  29. 29.
    R. A. Bengtsson, Polish refinery designed to streamline handling of copper anodes and cathodes, Eng. Min. J. 92 (February 1976).Google Scholar
  30. 30.
    Cheaper electrolytic ore extraction, Min. Mag. 118 (6), 397 (1968).Google Scholar
  31. 31.
    J. A. Davis, The unidirectional flow ventilation system, Heat. Piping Air Cond. 49 (3), 63 (1977).Google Scholar
  32. 32.
    J. Smith, Infrared scanning spots tankhouse problems, Eng. Min. J. 175 (1), 96 (1974).Google Scholar
  33. 33.
    T. B. Braun, J. R. Rawling, and K. J. Richards, Factors affecting the quality of electrorefined cathode copper, Extractive Metallurgy of Copper, Vol. 1, J. C. Yannopoulos and J. C. Agarwal, eds., AIME, New York (1976), Chap. 25, p. 511.Google Scholar
  34. 34.
    V. A. Ettel, Energy requirements in electrolytic winning and refining of metals, CIM Bull. 70(783), 179 (1977).Google Scholar
  35. 35.
    D. A. Petrov, L. T. Lachev, and J. D. Popov, Method for electrolytic refining of copper at high current densities (300–700 A/m2), Bulgarian Patent 10, 188 (1963).Google Scholar
  36. 36.
    Non-ferrous metal data, American Bureau of Metal Statistics Inc. (1976).Google Scholar
  37. 37.
    M. Barak, The technological significance of the electrochemistry of lead, Chem. Ind. (London), No. 20, 871 (October 16, 1976 ).Google Scholar
  38. 38.
    E. R. Freni, Electrolytic lead refining in Sardinia, J. Met. 17 (11), 1206 (1965).Google Scholar
  39. 39.
    F. R. Archibald, The Kristiansand nickel refinery, J. Met. 14 (9), 648 (1962).Google Scholar
  40. 40.
    L. P. Nicolaidis, Larymna nickel, Mining Mag. 125 (3), 200 (1971).Google Scholar
  41. 41.
    L. V. Volkov, The present state of electrolysis in the nickel industry and prospects for its improvement, Tsvetn. Metall. (Non-Ferrous Metals) 7, 30 (1975).Google Scholar
  42. 42.
    W. W. Spence and W. R. Cook, The Thompson Refinery, Trans. Can. Inst. Min. Metall. 67, 257 (1964).Google Scholar
  43. 43.
    C. L. Mantell, Electrochemical Engineering, McGraw-Hill, New York (1960).Google Scholar
  44. 44.
    A. H. Leigh, Precious metals refining practice, International Symposium on Hydrometallurgy,D. J. I. Evans and R. S. Shoemaker, eds., American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., New York (1973), Chap. 5.Google Scholar
  45. 45.
    T. S. Mackey, The electrolytic tin refining plant at Texas City, Texas, J. Met. 21 (6), 32 (1969).Google Scholar
  46. 46.
    R. M. MacIntosh, Tin and tin alloys-metallurgy, in Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 20, H. Mark, ed., Interscience Publishers, New York (1969), p. 278.Google Scholar
  47. 47.
    F. S. Gaunce, G. M. Freeman, J. E. Dulson, C. E. Paden, E. G. Sharp, E. R. Hamilton, P. Salmon, and D. J. Kemp, The electrolytic zinc plant, CIM Bull. 67 (745), 116 (May 1974).Google Scholar
  48. 48.
    C. J. VanNiekerk and D. R. Allen, The electrolytic extraction of zinc at the zinc corporation of South Africa Limited, J. S. Afr. Inst. Min. Met., 146 (February 1977).Google Scholar
  49. 49.
    L. Mager, Processes for zinc electrolysis, Chem. Ing. Tech. 45, 158 (1973).Google Scholar
  50. 50.
    E. VanDen Neste, Metallurgie Hoboken-Overpelt’s zinc electrowinning plant, CIM Bull. 70 (784), 173 (August 1977).Google Scholar
  51. 51.
    D. Gilroy, Industrial Electrochemical Processes, A. T. Kuhn, ed., Elsevier, Amsterdam (1971).Google Scholar
  52. 52.
    D. L. Simpson, B. H. Ensign, and K. F. Marquardson, The design of the process and facilities for the recovery of copper from silicate ores at Ray Mines Division, Kennecott Copper Corporation, paper presented at TMS Operating Metallurgy Conference, December, 1967.Google Scholar
  53. 53.
    W. A. Griffith, H. E. Day, T. S. Jordan, and V. C. Nyman, Development of the roast-leachelectrowin process for Lakeshore, J. Met. 27 (2), 17 (1975).Google Scholar
  54. 54.
    L. R. Verney, J. E. Harper, and P. N. Vernon, Development and operation of the Chambishi process for the roasting, leaching, and electrowinning of copper, Electrometallurgy, T. A. Henrie and D. H. Baker, eds., AIME, New York (1968), p. 272.Google Scholar
  55. 55.
    K. R. Rawling, Commercial solvent extraction plant recovers copper from leach liquors, World Min., 34 (December 1969).Google Scholar
  56. 56.
    J. A. Holmes, L. N. Stewart, A. D. Denchar, and J. D. Parker, Design, construction, and commissioning of the Nchanga Tailings leach plant, in Extractive Metallurgy of Copper, Vol. II, J. C. Yannopoulos and J. C. Agarwal, eds., AIME, New York (1976), Chap. 46, p. 907.Google Scholar
  57. 57.
    H. Kudelka, R. Dobbener, and N. L. Piret, Copper electrowinning at Duisburger Kupferhuette, CIM Bull. 70 (784), 186 (1977).Google Scholar
  58. 58.
    A. S. Gendron, R. R. Matthews, and W. C. Wilson, Production of high quality electrorefined and electrowon copper at INCO’s Copper Cliff copper refinery, CIM Bull. 70 (784), 166 (1977).Google Scholar
  59. 59.
    P. Charles and P. Hannaert, Fluid bed cementation of selenium contained in a copper electrolyte, Copper Metallurgy, R. P. Ehrlich, ed., AIME, New York (1970), p. 240.Google Scholar
  60. 60.
    W. W. Harvey, Material balance and current efficiency in electrowinning, paper presented at the 67th Annual AIChE Meeting, December, 1974.Google Scholar
  61. 61.
    W. R. Hopkins, G. Eggett, and J. B. Schuffham, Electrowinning of copper from solvent extraction electrolytes-problems and possibilities, in International Symposium on Hydrometallurgy, D. I. J. Evans and R. S. Shoemaker, eds., American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., New York (1972), Chap. 7.Google Scholar
  62. 62.
    Hydrometallurgy: New processes move to commercialization, Eng. Min. J. 177 (6), 244 (1976).Google Scholar
  63. 63.
    H. T. Brown and P. G. Mason, Electrowinning of nickel at the Bindura Smelting and Refining Company, J. S. Afr. Inst. Min. Met., 143 (February 1977).Google Scholar
  64. 64.
    L. R. Hougen, R. Parkinson, J. Saetre, and G. Vanweet, Operating experiences with a pilot plant for the electrowinning of nickel from all-chloride electrolyte, CIM Bull. 70 (782), 136 (1977).Google Scholar
  65. 65.
    P. Mardine, S. Gratien, and L. Allais, Electrolytic cell, U.S. Patent 3,959, 111 (1976).Google Scholar
  66. 66.
    R. J. M. Wyllie, Why Gecomines is a world leader in copper and cobalt hydrometallurgy, World Min. 42 (September 1970).Google Scholar
  67. 67.
    M. A. Bouchat and J. J. Saquet, Electrolytic cobalt recovery in Katanga, in Extractive Metallurgy of Copper, Nickel, and Cobalt, P. Queneau, ed., Interscience, New York (1961).Google Scholar
  68. 68.
    C. A. Hampel, Zinc and Cadmium Electrowinning, in The Encyclopedia of Electrochemistry, Reinhold, New York (1964), p. 1180.Google Scholar
  69. 69.
    R. J. Hopkins and J. C. Nixon, Minor metals, in The Australian Mining, Metallurgical, and Mineral Industry, J. T. Woodcock, ed., The Iron and Steel Institute, The Institute of Metals, Joint Library, London (1965), Chap. 10, p. 229.Google Scholar
  70. 70.
    Mineral facts and problems, U.S. Bur. Mines Bull. 630 (1965).Google Scholar
  71. 71.
    F. E. Bacon, Chromium electrowinning, in The Encyclopedia of Electrochemistry, Reinhold, New York (1964), p. 198.Google Scholar
  72. 72.
    A. G. Thomson, Manganese, Min. Ann. Rev., 69 (May 1968).Google Scholar
  73. 73.
    M. Harris, D. M. Meyer, and K. Auerswald, The production of electrolytic manganese in South Africa, J. S. Afr. Inst. Min. Met., 137 (February 1977).Google Scholar
  74. 74.
    D. Schlain, Preparation of primary purified metal by electrowinning and electrorefining from aqueous and non-aqueous electrolytes, Vol. 1, Part 2, Techniques of Material Preparation and Handling, Techniques of Metal Research, R. F. Bunshah, ed., Interscience, New York (1968), Chap. 2, p. 493.Google Scholar
  75. 75.
    L. K. Hudson, Gallium as a by-product of alumina manufacture, J. Met. 17(9), 948 (1965).Google Scholar
  76. 76.
    W. Ryan, Non-Ferrous Extraction Metallurgy in the United Kingdom, Institute of Mining and Metals, London (1968).Google Scholar
  77. 77.
    G. Bridgestock, E. M. Elkin, and S. S. Forbes, Operations at Canadian Copper Refiners Limited, Can. Min. Met. Bull., 773 (October 1960).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • V. A. Ettel
    • 1
  • B. V. Tilak
    • 2
  1. 1.J. Roy Gordon Research LaboratoryINCO Metals CompanyMississaugaCanada
  2. 2.Research CenterHooker Chemical CorporationGrand IslandUSA

Personalised recommendations