Electro-Organic Syntheses

  • Klaus Köster
  • Hartmut Wendt
Part of the Comprehensive Treatise of Electrochemistry book series (volume 2)


The history of organic electrochemical synthesis goes back to the earlier days of electrochemistry. As early as 1834 Faraday described the anodic conversion of acetate anions to CO2.(1)


Radical Cation Radical Anion High Occupied Molecular Orbital Anodic Oxidation Unsaturated Hydrocarbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Faraday, Poggendorfs Ann. Phys. Chem. 33, 438 (1834).Google Scholar
  2. 2.
    H. Kolbe, Untersuchungen uber die Electrolyse organischer Verbindungen, Liebigs Ann. Chem. 69, 257–294 (1849).CrossRefGoogle Scholar
  3. 3.
    Al. Kamneva, M. Y. Fioshin, L. J. Kazukova, Sh. M. Itenberg, and A. Yu. Ershov, Synthesis of dimethyl-sebacate by anodic condensation, Khim. Prom., 263 (1963).Google Scholar
  4. 4.
    S. Swann, Jr., Electro-Organic Chemical Preparations, Trans. Electrochem. Soc. 69, 287–342 (1936).CrossRefGoogle Scholar
  5. 5.
    S. Swann, Jr., Electro-organic chemical preparations II, Trans. Electrochem. Soc. 77, 459–499 (1940).CrossRefGoogle Scholar
  6. 6.
    S. Swann, Jr., Electro-organic chemical preparations III, Trans. Electrochem. Soc. 88, 103120 (1945).Google Scholar
  7. 7.
    S. Swann, Jr., Electro-organic chemical preparations IV, Trans. Electrochem. Soc. 95, 219–226 (1952).CrossRefGoogle Scholar
  8. 8.
    F. Fichter, Organische Elektrochemie, Steinkopff, Leipzig/Dresden (1942).Google Scholar
  9. 9.
    K. J. Vetter, Elektrochemische Kinetik, Springer, Berlin (1961).Google Scholar
  10. 10.
    R. Parsons, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 1, P. Delahay and C. W. Tobias, eds., Interscience, New York (1961), pp. 1–64.Google Scholar
  11. 11.
    E. Gileadi, Electrosorption, Plenum Press, New York (1967).CrossRefGoogle Scholar
  12. 12.
    B. E. Conway, Electrode Processes, Ronald, New York (1965).Google Scholar
  13. 13.
    P. Delahay, Double Layer and Electrode Kinetics, Interscience, New York (1966).Google Scholar
  14. 14.
    M. M. Baizer, Electrolytic reductive coupling I, acrylonitrile, J. Electrochem. Soc. 111, 215–222 (1964).CrossRefGoogle Scholar
  15. 15.
    E. Guccione, Electrolysis: New route to alkyl lead compounds, Chem. Eng. 72 (13), 102 (1965).Google Scholar
  16. 16.
    L. Eberson and H. Schafer, Organic chemistry, in Topics in Current Chemistry, Vol. 21, Springer, Berlin (1971).Google Scholar
  17. 17.
    M. M. Baizer, ed., Organic Electrochemistry, Marcel Dekker, New York (1973).Google Scholar
  18. 18.
    F. Beck, Elektro-Organische Chemie, Verlag Chemie, Weinheim (1973).Google Scholar
  19. 19.
    J. Casanova and L. Eberson, in The Chemistry of the Carbon-Halogen Bond, S. Patai, ed., Part 2, Interscience, New York (1973), pp. 979–1047.Google Scholar
  20. 20.
    H. L. Lehmkuhl, Preparative scope of organometallic chemistry, Synthesis, 377–396 (1973).Google Scholar
  21. 21.
    J. M. Bobbit, Electro-oxidation and isoquinoline-alkaloid biosynthesis, Heterocycles 1, 181–221 (1973).CrossRefGoogle Scholar
  22. 22.
    L. Eberson and K. Nyberg, Synthetic Use of Anodic Substitution Reactions, Tetrahedron 32, 2185–2206 (1976).CrossRefGoogle Scholar
  23. 23.
    J. R. Backhurst, J. M. Coulson, F. Goodrich, and R. E. Plimley, Preliminary investigations of fluidized-bed electrodes, J. Electrochem. Soc. 116, 1600 (1969).CrossRefGoogle Scholar
  24. 24.
    M. Fleischmann, J. W. Oldfield, and C. L. K. Tennakon, Electrochemical Bipolar Particulate Cells, in Abstracts of the Symposium on Electrochemical Engineering, Newcastle-upon-Tyne, Vol. 3 (1971), pp. 53–69.Google Scholar
  25. 25.
    F. Beck and H. Guthke, Entwicklung neuerer Zellen für elektroorganische Synthesen, Chem. Ing. Tech. 41, 943–950 (1969).CrossRefGoogle Scholar
  26. 26.
    V. D. Parker, On the Problem of Assigning Values of Energy Changes of Electrode Reactions, J. Am. Chem. Soc. 96, 5656–5659 (1974).CrossRefGoogle Scholar
  27. 27.
    V. D. Parker, Energetics of electrode reactions II: The relationship between redox potentials, ionization potentials, electron affinities and solvation energies of aromatic hydrocarbons, J. Am. Chem. Soc. 98, 98–103 (1976).CrossRefGoogle Scholar
  28. 28.
    E. Heilbronner and Bock, Das HMO-Modell und Sein Anwendung, Band I, II, III, Verlag Chemie, Weinheim.Google Scholar
  29. 29.
    J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry, Plenum/Rosetta Edition, New York (1973), p. 955.Google Scholar
  30. 30.
    H. Schafer, Oxidative Addition von Anionen an Olefine und Oxidative Dimerisierung von Olefinen, Chem. Ing. Tech. 42, 164–170.Google Scholar
  31. 31.
    I. Lillie, G. Beck, and A. Henglein, Pulsradiolyse und Polarographie: Halbstufenpotentiale fur die Oxidation und Reduktion von kurzlebigen organischen Radikalen an der Hg Elektrode, Ber. Bunsenges Phys. Chem. 75, 458–465 (1971).Google Scholar
  32. 32.
    J. K. Kochi, Oxidation-reduction reactions of free radicals, in Free Radicals, J. K. Kochi, ed., Wiley-Interscience, New York (1973).Google Scholar
  33. 33.
    M. Katz, Oe. Saygin, and H. Wendt, Process variables in electro-organic synthesis II, the direct anodic oxidation of butadiene leading to the production of bimethoxylated C4, C8 and C12 olefins, Electrochem. Acta. 19, 193–200 (1974).CrossRefGoogle Scholar
  34. 34.
    V. Plzak, H. Schneider, and H. Wendt, Process variables in electro-organic synthesis III, electrosorption and mass-transfer as dominating factors in the anodic styrene oxidation, Ber. Bunsenges Phys. Chem. 78, 1373–1379 (1974).Google Scholar
  35. 35.
    J. M. Fritsche and H. Weingarten, Electrolytic oxidation of organics I, oxidative coupling of vinylidenebisdimethylamine to dimethylaminobutadiene, J. Am. Chem. Soc. 90, 793–795 (1968).CrossRefGoogle Scholar
  36. 36.
    E. Steckhan, Spectrochemical study of olefins I, Electrochem. Acta. 22, 395–399 (1977).CrossRefGoogle Scholar
  37. 37.
    G. Faifa, M. Fleischmann, and D. Pletcher, Anodic oxidation of cyclohexene-chloridione mixtures in acetonitrile, J. Electroanal. Chem. 25, 455–459 (1970).CrossRefGoogle Scholar
  38. 38.
    H. Schafer and E. Steckhan, Anodische Dimerisierung and Funktionalisierung von Olefinen, Chem. Ing. Tech. 44, 186–187 (1972).CrossRefGoogle Scholar
  39. 39.
    H. Schafer, Oxidative Dimerisierung von Olefinen, Angew. Chem. 81, 532 (1969).CrossRefGoogle Scholar
  40. 40.
    V. D. Parker, Anodic oxidation of amines, in Organic Electrochemistry, M. M. Baizer, ed., Marcel Dekker, New York (1973), pp. 509–530.Google Scholar
  41. 41.
    V. D. Parker, Anodic oxidation of oxygen-containing compounds, in Organic Electrochemistry, M. M. Baizer, ed., Marcel Dekker, New York (1973), pp. 531–550.Google Scholar
  42. 42.
    V. D. Parker, Anodic oxidation of sulfur-containing compounds, in Organic Electrochemistry M. M. Baizer, ed., Marcel Dekker, New York (1973), pp. 551–562.Google Scholar
  43. 43.
    H. Hoffelner, S. Yorgiyadi, and H. Wendt, Anodic phenyl-onium-cation formation I, trisanisylfulfonium cation, J. Electroanal. Chem. 66, 138–142 (1975).CrossRefGoogle Scholar
  44. 44.
    L. L. Miller and A. K. Hoffman, The electrochemical formation of carbonium and jodonium ions from alkyl and aryliodides, J. Am. Chem. Soc. 89, 593–597 (1967).CrossRefGoogle Scholar
  45. 45.
    H. Hoffelner, H. W. Lorch, and H. Wendt, Anodic phenyl-onium cation formation II, reaction mechanism and optimization for the anodic formation of diphenyliodonium cations, J. Electroanal. Chem. 66, 183–194 (1975).CrossRefGoogle Scholar
  46. 46.
    F. Beck and H. Leitner, Elektrochemische Initiierte Polymerisation von Arylnitril, Angew. Makromol. Chem. 2, 51–63 (1968).CrossRefGoogle Scholar
  47. 47.
    F. Beck, Die Rolle des Elektrolyten bei der kathodischen Dimerisierung des Acrylnitrils, Ber. Bunsenges. Phys. Chem. 72, 379–388 (1968).Google Scholar
  48. 48.
    J. E. Gillet, Ueber den Mechanismus det elektrochemischen Reduktion aktivierter Olefine, Chem. Ing. Tech. 40, 573–575 (1968).CrossRefGoogle Scholar
  49. 49.
    J. P. Petrowitch and M. M. Baizer, Electrolytic reductive coupling XIX, Effect of counter-ions in cathodic reductions of 1,2 diactivated olefins, J. Electrochem. Soc. 118, 447–450 (1971).CrossRefGoogle Scholar
  50. 50.
    L. G. Feoktistov and H. Lund, Saturated carbonyl compounds and derivatives, in Organic Electrochemistry,M. M. Baizer, ed., Marcel Dekker, New York (1973) pp. 347–398.Google Scholar
  51. 51.
    J. W. Loveland, Electrolytic Production of Acylic-Carboxylic Acids from Hydrocarbons, U.S. Patent 3,032,489, Ca 57, 4470 (1962).Google Scholar
  52. 52.
    S. Wawzonek and D. Wearing, Polarographic studies in acetonitrile and dimethylformamide IV (stability of anion-free radicals), J. Am. Chem. Soc. 81, 2067–2069 (1959).CrossRefGoogle Scholar
  53. 53.
    S. Bank and D. A. Noyd, Reactions of aromatic radical anions III, reaction with sulfur dioxide (1), Tetrahedron Lett., 1314–1415 (1969).Google Scholar
  54. 54.
    F. Beck, Electro-Organische Chemie, Verlag Chemie, Weinheim (1973), p. 253.Google Scholar
  55. 55.
    D. A. Tysee and M. M. Baizer, Electrocarboxylation I, mono-and dicarboxylation of activated olefins, Org. Chem. 39, 2819–2823 (1974).CrossRefGoogle Scholar
  56. 56.
    D. A. Tysee and M. M. Baizer, Electrocarboxylation. II. Electrocarboxylation dimerization and cyclization, J. Org. Chem. 39, 2823–2828 (1974).CrossRefGoogle Scholar
  57. 57.
    J. Lund, Cathodic reduction of nitro-compounds, in Organic Electrochemistry, M. M. Baizer, ed., Marcel Dekker, New York (1973), 315–346.Google Scholar
  58. 58.
    M. R. Rifi, Electrochemical reduction of organic halides, in Organic Electrochemistry, M. M. Baiter, ed., Marcel Dekker, New York (1973), pp. 279–314.Google Scholar
  59. 59.
    L. Horner, Onium compounds, in Organic Electrochemistry, M. M. Baizer, ed., Marcel Dekker, New York (1973), 429–446.Google Scholar
  60. 60.
    R. Brettle and J. G. Parkin, Anodic oxidations II, the electrolysis of dialkyl sodiumalonates, J. Chem. Soc. B, 1352–1355 (1967).Google Scholar
  61. 61.
    N. Nyberg, Oxidative coupling, in Organic Electrochemistry, M. M. Balzer, ed., Marcel Dekker, New York (1973), pp. 705–730.Google Scholar
  62. 62.
    R. Bauer and H. Wendt, Anodic formation of diacetylenes, J. Electroanal. Chem. 80, 395–399 (1977).CrossRefGoogle Scholar
  63. 63.
    Z. Ali, R. Bauer, W. Schön, and H. Wendt, Anodic oxidation of N anions III. Anodic oxidation of N anions of diacyclamides, J. Appl. Electrochemistry 10, 97–107 (1980).Google Scholar
  64. 64.
    L. Eberson, Carboxylic acids, in Organic Electrochemistry, M. M. Baizer, ed., Marcel Dekker, New York (1973), pp. 469–508.Google Scholar
  65. 65.
    J. Knolle and H. J. Schafer, Synthesis of brevicomine by Kolbe-electrolysis, Angew. Chem. Int. Ed. Engl. 14, 785 (1975).CrossRefGoogle Scholar
  66. 66.
    W. Seidel, J. Knolle, and H. J. Schafer, Syntheses von Z-7-Dodecenylacetat (LoopLure) durch Kolbe-Electrolyse, Chem. Ber. 110, 3544–3552 (1977).CrossRefGoogle Scholar
  67. 67.
    T. Inoue and S. Tsutsumi, Electrochemical synthesis III, the homolytic methoxylation of some arylated olefins by the anodic oxidation of methanol, Bull. Chem. Soc. Jpn. 38, 661–666 (1965).CrossRefGoogle Scholar
  68. 68.
    H. Schafer and A. Alazrak, Oxidative Addition von Natrium-malon-sauredimethylester and acetylacetonat an Olefine, Angew. Chem. 80, 485–486 (1968).CrossRefGoogle Scholar
  69. 69.
    H. Schafer, Oxidative Addition des Azidions an Olefine, Ein einfacher Zugang zu Diaminen, Angew. Chem. 82, 134 (1970).CrossRefGoogle Scholar
  70. 70.
    H. Lund, Electrolysis of Heterocyclic Compounds, Organic Electrochemistry, M. M. Baizer, ed., Marcel Dekker, New York (1973), pp. 563–620.Google Scholar
  71. 71.
    H. Lund, Electrolysis of N. Heterocyclic Compounds, Electrolysis of N. Heterocyclic Compounds, Vol. 12, A. R. Katritzky and A. J. Boulton, eds., Academic, New York (1970), pp. 213–316.Google Scholar
  72. 72.
    D. Koch and H. Schafer, Einstufige Pyrol Synthese durch anodische Dimerisierung von Enaminketonen odor Estern, Angew. Chem. 85, 264–265 (1973).CrossRefGoogle Scholar
  73. 73.
    D. J. Clemens, A. K. Garrison, and A. L. Underwood, Electrochemical reduction of 1,1’-ethylene-bis-(3-carbamide-pyridiumbromide), J. Org. Chem. 34, 1867–1871 (1969).CrossRefGoogle Scholar
  74. 74.
    L. Eberson and H. Homer, Stereochemistry of Organic Electrode Processes, Organic Electrochemistry, M. M. Baizer, ed., Marcel Dekker, New York (1973), pp. 869–900.Google Scholar
  75. 75.
    A. J. Fry, Stereochemistry of Electrochemical Reductions in Topics in Current Chemistry, Vol. 34, Springer, Berlin/New York (1972), pp. 1–48.Google Scholar
  76. 76.
    R. N. Gourley, J. Grimshaw, and P. G. Millar, Electrochemical reduction in the presence of tertiary amines: An asymmetric synthesis of 3,4-dihydro-4-methylcoumarin, Chem. Commun., 1278–1279 (1967).Google Scholar
  77. 77.
    J. Kopilov, E. Kariv, and L. L. Miller, Asymmetric, cathodic reductions of acetylpyridines, J. Am. Chem. Soc. 99, 3450–3454 (1977).CrossRefGoogle Scholar
  78. 78.
    W. J. M. van Tilborg, Phase-sensitive detection of adsorption phenomena at mercury electrode, J. Royal Netherlands Chem. Soc. 96, 213–230 (1977).Google Scholar
  79. 79.
    R. N. Adams, Electrochemistry at Solid Electrodes,Marcel Dekker, New York (1969), p: 19.Google Scholar
  80. 80.
    R. C. Augustine, ed., Oxidation Techniques and Applications in Organic Chemistry, Marcel Dekker, New York (1969).Google Scholar
  81. 81.
    M. Kappel, Elektrolytische Regeneration von Chromsaure, Chem. Ing. Tech. 35, 386–389 (1963).CrossRefGoogle Scholar
  82. 82.
    N. Ibl and H. W. Lorch, private communication.Google Scholar
  83. 83.
    W. Funke, Reduktion Organischer Verbindungen mit Na-triumamalgam, Chem. Ing. Tech. 35, 336–340 (1963).CrossRefGoogle Scholar
  84. 84.
    H. C. Rance and J. M. Caulson, Electrolytic preparation of p-aminophenol, Electrochem. Acta 14, 283–292 (1969).CrossRefGoogle Scholar
  85. 85.
    J. R. Hanson and E. Premuzici, Die Reduktion Organischer Verbindungen mit CrII-Salzen, Angew. Chem. 80, 271–276 (1968).CrossRefGoogle Scholar
  86. 86.
    K. H. Simmrock, Die Herstellungsverfahren fur Propylen Oxid und ihre Elektrochemischen, Alternative Chem. Ing. Tech. 48, 1085–1076 (1976).CrossRefGoogle Scholar
  87. 87.
    M. Fremery, H. Hover, and G. Schwarzlose, Electrochemische Benzol-Oxidation, ein Nebenproduktfreier Weg zu Hydrochinon, Chem. Ing. Tech. 46, 635–637 (1974).CrossRefGoogle Scholar
  88. 88.
    J. P. Millington and J. Trotenau, A pilot plant for the electrolytic production of p-benzoquinone and hydroquinone, in Abstracts of the Spring Meeting of the Electrochemical Society, Washington, 1976, Electrochemical Society, Princeton, New Jersey (1976), p. 700.Google Scholar
  89. 89.
    A. C. Brown and J. Walker, Elektrolytische Synthesen Zweibasiger Sauren, Liebigs Ann. Chem. 261, 107–128 (1891); 41–47 (1893).CrossRefGoogle Scholar
  90. 90.
    M. Ya. Fioshin and A. I. Kamneva, Chem. Ind. (in Russian), 159 (1960); 263 (1963).Google Scholar
  91. 91.
    F. Beck, Kolbesynthese von Sebacinsaureestern in der Kapillarspaltzelle, Electrochem. Acta 18, 359–368 (1973).CrossRefGoogle Scholar
  92. 92.
    D. Danley, Industrial electro-organic electrochemistry, in Organic Electrochemistry,M. M. Baizer, ed., Marcel Dekker, New York (1973), pp. 907–943, esp. 939–943.Google Scholar
  93. 93.
    D. Danley, Industrial electro-organic electrochemistry, in Organic Electrochemistry, M. M. Baizer, ed., Marcel Dekker, New York (1973), pp. 936–939.Google Scholar
  94. 94.
    H. Nohe, Probleme der elektrochemischen Hydrierung aufgezeigt am Beispiel der Hydrierung von Phthalsaure zu Dihydrophthalsaure, Chem. Ing. Tech. 46, 594–602 (1974).CrossRefGoogle Scholar
  95. 95.
    V. Plzak and H. Wendt, Charge transfer and consecutive kinetics of azide anion oxidation at platinum, glassy carbon and carbon anodes in acetonitrile. An analogy to Kolbe synthesis, Ber. Bunsenges. Phys. Chem. 83, 481–486 (1979).Google Scholar
  96. 96.
    K. Köster, P. Riemenschneider, and H. Wendt, Influence of electrosorption on kinetics and selectivity of electroorganic synthetic reactions, Isr. J. Chem. 18, 141–151 (1979).Google Scholar
  97. 97.
    M. S. Venkatachalapathy, R. Ramaswamy, and H. V. K. Udupa, Electrically regenerated manganic sulphate for the oxidation of aromatic hydrocarbons I. Oxidation of toluene to benzaldehyde, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 8, 361–368 (1960).Google Scholar
  98. 98.
    S. Swann, Jr., and R. Alkire, Bibliography of electro-organic syntheses ( 1801–1975 ), Port City Press Inc., Baltimore Md. (1980).Google Scholar
  99. 99.
    H. Feess and H. Wendt, Performance of electrolysis with two-phase electrolyte, J. Chem. Tech. Biotechnol. 30, 297–312 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Klaus Köster
    • 1
  • Hartmut Wendt
    • 1
  1. 1.Institute of Chemical TechnologyTechnical University of DarmstadtDarmstadtWest Germany

Personalised recommendations