Abstract

This chapter deals with the electrochemical synthesis of inorganic compounds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. C. Gardiner, Advances in electrolytic production of the industrial chemicals from 1952 to 1977, J. Electrochem. Soc. 125, 22C - 29C (1978).CrossRefGoogle Scholar
  2. 2.
    H. V. Casson and G. J. Crane, Technology and economics of on-site sodium chlorate production, Paper Trade J., 65–68 (May 15, 1967 ).Google Scholar
  3. 3.
    H. V. Casson, G. J. Crane, and G. E. Styan, Technology and economics of on-site sodium chlorate production, Pulp Paper Mag. Canada, 39–51 (1968).Google Scholar
  4. 4.
    Anonymous, Sodium chlorate: Bright pulp industry future, Chem. Eng. (N.Y.), 74–76 (September 1967).Google Scholar
  5. 5.
    E. Kesting, Ger. Pat. 831, 542 (1948).Google Scholar
  6. 6.
    W. H. Rapson, Recent developments in the manufacture of chlorine dioxide, Can. J. Chem. Eng. 36, 262–266 (1958).CrossRefGoogle Scholar
  7. 7.
    W. H. Rapson, Pulp bleaching as of today, Tappi 62 (6), 14–17 (1979).Google Scholar
  8. 8.
    G. C. Lyttle, Economics of oxygen applications for the pulp and paper industry, Paper Trade J., 25–27 (Feb. 28, 1979 ).Google Scholar
  9. 9.
    A. R. Despic, in Electrochemistry. The Past Thirty and the Next Thirty Years, H. Bloom and F. Gutmann, eds., Plenum, New York (1977), p. 15.Google Scholar
  10. 10.
    W. von Hisinger and J. Berzelius, Versuche, betreffend die Wirkung der electrischen Säule auf Salze und auf einige von ihren Basen, Neues Allg. J. Chem. 1, 115–149 (1803).Google Scholar
  11. 11.
    H. Kolbe, Beobachtungen über die oxydirende Wirkung des Sauerstoffs, wenn derselbe mit Hülfe einer elektrischen Säule entwickelt wird, J. Prakt. Chem. 41, 137–139 (1847).CrossRefGoogle Scholar
  12. 12.
    C. Watt, Brit. Pat. 13, 785 (1851).Google Scholar
  13. 13.
    J. B. Kershaw, Die elektrolytische Chloratindustrie, Knapp, Halle (Saale ) (1905).Google Scholar
  14. 14.
    F. Oettel, Studien über die elektrolytische Bildung von unterchlorigsauren Salzen und chlorsauren Salzen, Z. Elektrochem. 1, 354–361 (1894); 1, 474–480 (1895).CrossRefGoogle Scholar
  15. 15.
    F. Oettel, Zur Elektrolyse von Chlorcalcium-Lösungen, Z. Elektrochem. 5, 1–9 (1898).CrossRefGoogle Scholar
  16. 16.
    F. Haber and S. Grinberg, Über die Elektrolyse der Salzsäure, Z. Anorg. Chem. 16, 198–228, 329–361 (1898).CrossRefGoogle Scholar
  17. 17.
    H. Wohlwill, Über die Elektrolyse der Alkalichloride, Z. Elektrochem 5, 52–76 (1898).CrossRefGoogle Scholar
  18. 18.
    F. Foerster, E. Müller, and F. Jorre, Zur Kenntnis der Vorgänge bei der Elektrolyse der Alkalichlorid-Lösungen, Z. Elektrochem. 6, 11–23 (1899).CrossRefGoogle Scholar
  19. 19.
    F. Foerster and F. Jorre, Zur Kenntniss der Beziehungen der unterchlorigsauren Salze zu den chlorsauren Salzen, J. Prakt. Chem. 59, 53–101 (1899).CrossRefGoogle Scholar
  20. 20.
    F. Foerster, Elektrochemie wässeriger Lösungen,3rd ed., Barth, Leipzig (1922): (a) p. 672, (b) pp. 780–786, (c) pp. 789–792, (d) p. 842, (e) p. 681, (f) p. 663.Google Scholar
  21. 21.
    V. de Valera, On the theory of electrochemical chlorate formation, Trans. Faraday Soc. 49, 1338–1351 (1953).CrossRefGoogle Scholar
  22. 22.
    V. de Valera, The mechanism of chloride electrolysis, Trans. Faraday Soc. 52, 250–260 (1956).CrossRefGoogle Scholar
  23. 23.
    V. de Valera, Anodic oxygen evolution in chlorate cells, Trans. Faraday Soc. 60, 1450–1456 (1964).CrossRefGoogle Scholar
  24. 24.
    N. Ibl and D. Landolt, On the mechanism of anodic chlorate fcrmation in dilute NaC1 solutions, J. Electrochem. Soc. 115, 713–720 (1968).CrossRefGoogle Scholar
  25. 25.
    D. Landolt and N. Ibl, On the mechanism of anodic chlorate formation in concentrated NaCI solutions, Electrochim. Acta 15, 1165–1183 (1970).CrossRefGoogle Scholar
  26. 26.
    M. M. Jaksic, Mass transfer and optimization of Faradaic yields in a chlorate cell process, Electrochim. Acta 21, 1127–1136 (1976).CrossRefGoogle Scholar
  27. 27.
    J. Landin, Swedish Patent 8820 (1897).Google Scholar
  28. 28.
    P. Imhoff, German Patent 110, 505 (1898).Google Scholar
  29. 29.
    P. Imhoff, U.S. Patent 627, 063 (1898).Google Scholar
  30. 30.
    C. Wagner, The cathodic reduction of anions and the anodic oxidation, J. Electrochem. Soc. 101, 181–185 (1954).CrossRefGoogle Scholar
  31. 31.
    E. Müller and P. Koppe, Einfluss der Stromkonzentration auf die elektrolytische Chloratbildung, Z. Elektrochem. 17, 421–430 (1911).Google Scholar
  32. 32.
    A. Schumann-Leclercq, French Patent 772, 326 (1933).Google Scholar
  33. 33.
    D. V. Kokoulina and L. I. Krishtalik, The volume reaction forming sodium chlorate in the anolyte of the chlorate electrolyzer, Soy. Electrochem. 7, 325–330 (1971); Elektrokhem. 7, 346–352 (1971).Google Scholar
  34. 34.
    E. Hausmann, West German Patent 957, 937 (1957).Google Scholar
  35. 35.
    J. Fleck, Chlorat-Elektrolyse, Chem. Ing. Tech. 43, 173–177 (1971).CrossRefGoogle Scholar
  36. 36.
    T. Matsumura, R. Itai, M. Shibuya, and G. Ishi, Electrolytic manufacture of sodium chlorate with magnetite anodes, Electrochem. Technol. 6, 402–404 (1968).Google Scholar
  37. 37.
    M. Janes, Graphite anodes in brine electrolysis. II. Application to chlorate cells, Trans. Electrochem. Soc. 92, 23–44 (1947).CrossRefGoogle Scholar
  38. 38.
    N. N. Nechiporenko, P. Kh. Voroshilov, N. V. Sivokon, and V. K. Beidin, Investigation of the anode process in electrolysis of sodium chloride solution, Zh. Prikl. Khim. 33,1818–1828 (1960); J. Appl. Chem. USSR 33, 1798–1807 (1960).Google Scholar
  39. 39.
    R. Weiner and G. Klein, Lebensdauer von Graphit-Anoden bei der technischen Chlorat-Herstellung, Chem. Ing. Tech. 29, 339–344 (1957).CrossRefGoogle Scholar
  40. 40.
    M. M. Jaksie and I. M. Czonka, Improvements in the impregnation of graphite anodes for electrolysis of alkali chlorides, Electrochem. Technol. 5, 473–478 (1967).Google Scholar
  41. 41.
    M. M. Jaksie, The effect of pH on graphite wear in a chlorate cell process, J. Appl. Electrochem. 3, 219–225 (1973).CrossRefGoogle Scholar
  42. 42.
    G. Wranglén, B. Sjödin and B. Wallén, A new test method for graphite anodes in alkali chloride electrolysis, Electrochim. Acta 7, 577–587 (1962).CrossRefGoogle Scholar
  43. 43.
    T. Nagai and T. Takei, Electrolytic production of chlorate I. Mechanism of chlorate formation, Denki Kagaku 24, 557–561 (1956).Google Scholar
  44. 44.
    B. Carlson, Die elektrochemische Industrie Schwedens, Z. Elektrochem. 6, 471–472 (1900).CrossRefGoogle Scholar
  45. 45.
    K. R. Koziol, K. H. Sieberer, H.-C. Rathjen, J. B. Zenk, and E. F. Wenk, Neue Entwicklungen und Möglichkeiten mit beschichteten Titan-Anoden, Chem. Ing. Tech. 49, 292 (1977).CrossRefGoogle Scholar
  46. 46.
    G. Grube and A. Burkhardt, Die Verwendung verchromter Kathoden bei der elektrolytischen Darstellung der Chlorate, Z. Elektrochem. 30, 67–72 (1927).Google Scholar
  47. 47.
    T. Nagai and T. Takei, Reduction at cathode and its prevention by chromium plated cathode in chlorate production, J. Electrochem. Soc. Jpn 25, E-79 (1957).Google Scholar
  48. 48.
    B. D. Yurkevich and B. M. Vrevskii, Mechanism of electrolysis of solutions of alkali metal chlorides with ion-exchanger cathodes (in Russian), Tr. Probl. Lab. Leningr. Inst. Tekst. Logk. Prom., 345–349 (1971); cited in Chem. Abstr. 78, 51708 (1973).Google Scholar
  49. 49.
    J. R. Newberry, W. C. Gardiner, A. J. Holmes, and R. F. Fogle, High current density chlorate cell using platinized anodes, J. Electrochem. Soc. 116, 114–118 (1969).CrossRefGoogle Scholar
  50. 50.
    J. R. Hodges, private communication, 1978.Google Scholar
  51. 51.
    L. M. Elina, Yu. V. Dobrov, and V. M. Gitneva, Study of titanium as a material for cathodes in chlorate baths, Zh. Prikl. Khim. 47, 1655–1657 (1974); J. Appl. Chem. USSR 47, 1699–1701 (1974).Google Scholar
  52. 52.
    J. R. Hodges, Pennwalt Corp., U.S. Patent 4,075, 077 (1978).Google Scholar
  53. 53.
    F. Foerster and E. Müller, Beiträge zur Theorie der Elektrolyse von Alkalichloridlösungen, Z. Electrochem. 9 171–185, 195–208 (1903).Google Scholar
  54. 54.
    F. Foerster and P. Dolch, Die Umwandlung von Hypochlorit in Chlorat in alkalischer Lösung, Z. Elektrochem. 23, 137–147 (1917).Google Scholar
  55. 55.
    F. Foerster, The electrolysis of hypochlorite solutions, Trans. Am. Electrochem. Soc. 46, 23–50 (1924).Google Scholar
  56. 56.
    M. W. Lister, Decomposition of sodium hypochlorite: the uncatalyzed reaction, Can. J. Chem. 34, 465–478 (1956).CrossRefGoogle Scholar
  57. 57.
    M. W. Lister and R. C. Petterson, Oxygen evolution from sodium hypochlorite solutions, Can. J. Chem. 40, 729–733 (1962).CrossRefGoogle Scholar
  58. 58.
    M. W. Lister, Decomposition of sodium hypochlorite: the catalyzed reaction, Can. J. Chem. 34, 479–488 (1956).CrossRefGoogle Scholar
  59. 59.
    J. M. GonzâlezBarredo, Demostración de la naturaleza autocatalítica de la descomposición del ion hipocloroso, An. Fis. Quim. 37, 123–157 (1941).Google Scholar
  60. 60.
    N. V. S. Knibbs, Perchlorate formation, Trans. Faraday Soc. 16, 424–433 (1920).CrossRefGoogle Scholar
  61. 61.
    N. V. S. Knibbs, Chlorate formation, Trans. Faraday Soc. 16, 415–424 (1920).CrossRefGoogle Scholar
  62. 62.
    H. Imagawa, Chemical reactions in the chlorate manufacturing electrolytic cell. (a) Part I: The vapour pressure of hypochlorous acid on its aqueous solution, J. Electrochem. Soc. Jpn. 18, 382–385 (1950)Google Scholar
  63. (b).
    Part II: The vapour pressure of hypochlorous acid on its mixed aqueous solution with sodium chlorate, J. Electrochem. Soc. Jpn. 19, 271–274 (1951)Google Scholar
  64. (c).
    Part III: Reaction of chlorate formation with sodium hypochlorite and free hypochlorous acid, J. Electrochem. Soc. Jpn. 20, 25–28 (1952)Google Scholar
  65. (d).
    Part IV: The effect of sodium chlorate on the reaction of chlorate formation, J. Electrochem. Soc. Jpn. 20, 571–574 (1952)Google Scholar
  66. (e).
    Part V: The role of NaCI in chlorate formation and a new reaction scheme of chlorate formation, J. Electrochem. Soc. Jpn. 21, 520–525 (1953).Google Scholar
  67. 63.
    F. Foerster, Zur Kenntniss des Überganges der unterchlorigsauren Salze in chlorsaure Salze, J. Prakt. Chem. 63, 141–166 (1901).CrossRefGoogle Scholar
  68. 64.
    A. Skrabal and A. Berger, Determination of the dissociation constants of hypochlorous acid by the kinetic method, Monatsh. Chem. 70, 168–192 (1937).CrossRefGoogle Scholar
  69. 65.
    A. Skrabal, Zur Theorie der Halogenathbildung, Monatsh. Chem. 84, 102–115 (1953).CrossRefGoogle Scholar
  70. 66.
    J. d’Ans, H. E. Freund, Über die Chioratbildung aus Hypochlorit, Z. Elektrochem. 61, 10–18 (1957).Google Scholar
  71. 67.
    I. E. Flis and M. K. Bynyaeva, Autoxidation processes in hypochlorite solutions, Zh. Prikl. Khim. 30, 339 (1957); J. Appt. Chem. USSR 30, 359–365 (1957).Google Scholar
  72. 68.
    M. M. Jaksié, B. Z. Nikolié, I. M. Csonka, and A. B. Djordjevie, Effect of neutral salts on conversion of available chlorine to chlorate, J. Electrochem. Soc. 116, 684–687 (1969).CrossRefGoogle Scholar
  73. 69.
    J. C. Morris, The acid ionization constant of HOCI from 5 to 35°, J. Phys. Chem. 70, 3798–3805 (1966).CrossRefGoogle Scholar
  74. 70.
    H. Vogt, Comments on Jaksié [Reference 71], J. Electrochem. Soc. 121, 1606 (1974).CrossRefGoogle Scholar
  75. 71.
    M. M. Jaksié, Mutual effect of current density, pH, temperature, and hydrodynamic factors on current density in the chlorate cell process, J. Electrochem. Soc. 121, 70–79 (1974).CrossRefGoogle Scholar
  76. 72.
    M. Ya. Fioshin, Uspekhi y oblasti elektrosinteza neorganiceskikh soedinenii ( Advances in the electrosynthesis of inorganic compounds ), Idsdatelstvo “Khimiya” Moscow (1974).Google Scholar
  77. 73.
    V. A. Shlyapnikov, The mechanism of formation of sodium chlorate, Soy. Electrochem. 7, 1080–1082 (1971); Electrokhim. 7, 1128–1131 (1971).Google Scholar
  78. 74.
    V. A. Shlyapnikov, Theory of electrochemical synthesis of sodium chlorate, J. Appt. Chem. USSR 46, 1076–1082 (1973); Zh. Prikl. Khim. 46, 1014–1018 (1973).Google Scholar
  79. 75.
    A. Rius and J. Llopis, Sobre la oxidacion anodica de los hipochloritos alcalinos, An. Fis. Quim. 41, 1030–1053 (1945).Google Scholar
  80. 75a.
    A. Rius and J. Llopis, oxidacion anodica de hipocloritos con anodos distintos de platino, An. Fis. Quim. 41, 1282–1293 (1945).Google Scholar
  81. 76.
    M. M. Jaksié, A. R. Despié, I. M. Csonka, and B. Z. Nikolié, Studies on chlorate cell process. V. Theory and practice of a modified technology for electrolytic chlorate production, J. Electrochem. Soc. 116, 1316–1322 (1969).CrossRefGoogle Scholar
  82. 77.
    M. M. Jaksié, A. R. Despié, B. Z. Nikolié, and S. M. Maksié, Effect of some anions on the chlorate cell process, Croat. Chem. Acta 44, 61–66 (1972).Google Scholar
  83. 78.
    V. A. Shlyapnikov and T. S. Filippov, On the formation of chlorates in the electrochemical method of their production. I, Electrokhim. 2, 1273–1281 (1966); Soy. Electrochem. 2, 1165–1172 (1966).Google Scholar
  84. 79.
    V. A. Shlyapnikov and T. S. Filippov, On the problem of chlorate formation in the electrochemical method of its production. II, Electrokhim. 4, 15–18 (1968); Soy. Electrochem. 4, 20–23 (1968).Google Scholar
  85. 80.
    V. A. Shlyapnikov, The mechanism of sodium chlorate formation, J. Appt. Chem. USSR 42, 2051–2056 (1969); Zh. Prikl. Khim. 42, 2182–2188 (1969).Google Scholar
  86. 81.
    E. I. Yakovleva, K. I. Rozental, and T. S. Filippov, The electrochemical formation mechanism of chlorine-oxygen compounds on a smooth platinum electrode. I, Zh. Fiz. Khim. 30, 937–944 (1956).Google Scholar
  87. 82.
    I. E. Flis and I. M. Vorob’ev, Kinetic investigation of the processes on the platinum electrode in hypochlorite solutions, Russ. J. Phys. Chem. 37, 973–977 (1963).Google Scholar
  88. 83.
    J. S. Mayell and S. H. Langer, Electrochemical kinetics of chloride-ion oxidation at a bright platinum electrode, Electrochim. Acta 9, 1411–1416 (1964).CrossRefGoogle Scholar
  89. 84.
    I. Atanasiu and L. Stancu, Electrochemical mechanism of formation of oxygenated chlorine compounds at graphite electrodes, Bul. inst. politek. Bucuresti 20, 61–73 (1958); Chem. Abstr. 55, 1238h (1961).Google Scholar
  90. 85.
    T. S. Filippov and E. I. Yakovleva, Study of the mechanism of electrochemical formation of oxychloride compounds by anodic polarography, Trudy Chetvertogo Soveschchaniya po Elektrokhimii, Moscow (1956), pp. 257–262; Chem. Abstr. 54, 8368a (1960).Google Scholar
  91. 86.
    F. Foerster and E. Müller, Über das Verhalten der unterchlorigen Säure und ihrer Salze bei der Elektrolyse, Z. Elektrochem. 8, 633–638, 665–672 (1902).CrossRefGoogle Scholar
  92. 87.
    A. B. Djordjevié, B. Z. Nikolié, I. V. Kadija, A. R. Despié, and M. M. Jaksié, Kinetics and mechanism of electrochemical oxidation of hypochlorite ions, Electrochim. Acta 18, 465–471 (1973).CrossRefGoogle Scholar
  93. 88.
    F. Foerster and E. Müller, Zur Kenntnis der Elektrolyse, zumal der Alkalichloride, an platinierten Elektroden, Z. Elektrochem. 8, 515–540 (1902).CrossRefGoogle Scholar
  94. 89.
    L. Hammar and G. Wranglén, Cathodic and anodic efficiency losses in chlorate electrolysis, Electrochim. Acta 9, 1–16 (1964).CrossRefGoogle Scholar
  95. 90.
    M. S. Chao, The diffusion coefficients of hypochlorite, hypochlorous acid, and chlorine in aqueous media by chronopotentiometry, J. Electrochem. Soc. 115, 1172–1174 (1968).CrossRefGoogle Scholar
  96. 91.
    M. M. Jaksié, Individual ionic activities and mass transfer in anodic chlorate formation, J. Appl. Electrochem. 3, 307–314 (1973).CrossRefGoogle Scholar
  97. 92.
    A. R. Despié, M. M. Jaksié, and B. Nikolié, The effect of kinetic and hydrodynamic factors on current efficiency in the chlorate cell process, J. Appl. Electrochem. 2, 337–343 (1972).CrossRefGoogle Scholar
  98. 93.
    M. M. Jaksié, B. Z. Nikolié, and M. D. Spasojevié, Die Grundlagen der optimalen Auslegung von Chloratzellen, Chem. Tech. (Leipzig) 27, 158–162, 534–538 (1975).Google Scholar
  99. 94.
    M. M. Jaksié, A. R. Despié, and B. Z. Nikolié, The latest technological developments in the electrolytic production of chlorates, Elektrokhim. 8, 1573–1584 (1972); Soy. Electrochem. 8, 1533–1542 (1972).Google Scholar
  100. 95.
    N. Ibl and D. Landolt, to be published.Google Scholar
  101. 96.
    D. Landolt and N. Ibl, Anodic chlorate formation on platinized titanium, J. Appl. Electrochem. 2, 201–210 (1972).CrossRefGoogle Scholar
  102. 97.
    I. Taniguchi and T. Sekine, Chemical reaction of chlorate formation. Denki Kagaku 43, 715–720 (1975).Google Scholar
  103. 98.
    J. Claus, Evaluation of reactions in chlorate cells by digital computer, paper 256 presented at the Electrochemical Society Meeting, Boston, 1968.Google Scholar
  104. 99.
    Anonymous, New anodes show off for chemical producers, Chem. Eng. (N.Y.) 72, 82–83 (July 19, 1965 ).Google Scholar
  105. 100.
    K. C. Narasimham and H. V. K. Udupa, Preparation and applications of graphite substrate lead dioxide (GSLD) anode, J. Electrochem. Soc. 123, 1294–1298 (1976).CrossRefGoogle Scholar
  106. 101.
    M. W. Lister, The decomposition of hypochlorous acid. Can. J. Chem. 30, 879–889 (1952).CrossRefGoogle Scholar
  107. 102.
    V. I. Éberil’ and T. S. Filippov, Behavior of graphite anodes under the conditions of electrochemical production of sodium chlorate at different current densities, Zh. Prikl. Khim. 40, 2482–2487 (1967); J. Appl. Chem. USSR 40, 2377–2382 (1967).Google Scholar
  108. 103.
    T. S. Filippov, V. I. Éberil’, R. A. Agapova, and G. N. Razygraeva, Behavior of graphite electrodes under the conditions of electrochemical production of sodium chlorate: effects of added sodium chromate and of electrolyte pH, Zh. Prikl. Khim. 40, 2488–2491 (1967); J. Appl. Chem. USSR 40, 2383–2386 (1967).Google Scholar
  109. 104.
    V. I. Éberil’ and F. V. Kupovich, Influence of the NaCI concentration on magnitude of the anode potential and wear of the graphite anodes in the electrochemical preparation of chlorates, Elektrokhim. 6, 332–335 (1970); Soy. Electrochem. 6, 324–326 (1970).Google Scholar
  110. 105.
    R. A. Agapova and L. M. Elina, Influence of electrolyte pH on the behaviour of graphite anodes under the conditions of electrochemical production of sodium chlorate, Zh. Prikl. Khim. 44, 1302–1307 (1971); J. Appl. Chem. USSR 44, 1320–1324 (1971).Google Scholar
  111. 106.
    R. A. Agapova and L. M. Elina, Influence of sodium chloride concentration and electrolyte temperature on the stability of graphite anodes under the conditions of electrolytic production of chlorate, Zh. Prikl. Khim. 44, 1514–1518 (1971); J. Appl. Chem. USSR 44, 1536–1539 (1971).Google Scholar
  112. 107.
    V. I. Éberil’ and L. M. Elina, Some peculiarities of the behaviour of graphite anodes in the electrolysis of solutions of NaCI and, in particular, in the production of chlorates, Elektrokhim. 6, 782–786 (1970); Soy. Electrochem. 6, 758–762 (1970).Google Scholar
  113. 108.
    V. I. Éberil’, D. V. Kokoulina, L. I. Krishtalik, and L. M. Elina, The problem of the reasons for the increased internal wear of the graphite anodes in the electrochemical preparation of chlorate, Sou. Electrochem. 5, 304–307 (1969), Elektrokhim. 5, 336–340 (1969).Google Scholar
  114. 109.
    R. T. Atanasoski, B. Z. Nikolic, M. M. Jaksic, and A. R. Despic, Platinum-iridium catalyzed titanium anode. I. The properties and use in chlorate electrolysis, J. Appl. Electrochem. 5, 155–158 (1975).CrossRefGoogle Scholar
  115. 110.
    V. A. Shlyapnikov, Role of the anode material in electrosynthesis of chlorates, J. Appl. Chem. USSR 49, 86–89 (1976); Zh. Prikl. Khim. 49, 90–94 (1976).Google Scholar
  116. 111.
    T. R. Beck, A contribution to the theory of electrolytic chlorate formation, J. Electrochem. Soc. 116, 1038–1041 (1969).CrossRefGoogle Scholar
  117. 112.
    G. D. Westerlund, Canadian Patent 914,610 (1970/1972).Google Scholar
  118. 113.
    A. J. Holmes, U.S. Patent 3,043, 757 (1962).Google Scholar
  119. 114.
    N. Ibl and E. Adam, Optimierung in der elektrochemischen Verfahrenstechnik, Chem. Ing. Techn. 37, 573–581 (1965).CrossRefGoogle Scholar
  120. 115.
    J. Fleck, West German Auslegeschr. 1,667,574 (1967/1973).Google Scholar
  121. 116.
    R. Bauer, Die Chlorat-Elektrolyse, Chem. Ing. Tech. 34, 376–379 (1962).CrossRefGoogle Scholar
  122. 117.
    K. Hass and W. Tromm, Chloralkali-, Chlorwasserstoff-und Wasser-Elektrolyse, Chem. Ing. Tech. 40, 557–564 (1968).CrossRefGoogle Scholar
  123. J. C. Harke et al.,West German Offen. 2,248,552 (1973).Google Scholar
  124. 119.
    V. A. Shlyapnikov and E. I. Adaev, The electrosynthesis of Berthollet’s salt, potassium chlorate, Soy. Electrochem. 12, 1001–1003 (1976); Elektrokhim. 12, 1089–1092 (1976).Google Scholar
  125. 120.
    G. O. Westerlund, Canadian Patent 828,147 (1966/1969).Google Scholar
  126. 121.
    V. A. Shlyapnikov, Role of mixing of the electrolyte in electrosynthesis of chlorates, J. Appl. Chem. USSR 49, 371–373 (1976); Zh. Prikl. Khim. 49, 370–372 (1976).Google Scholar
  127. 122.
    British Patent 1,185,507 Krebs & Cie, Paris (1967).Google Scholar
  128. 123.
    P. Remirez, Producing captive sodium chlorate in integrated pump mills, Chem. Eng. (London) 74, 136–138 (14 August 1967 ).Google Scholar
  129. 124.
    V. I. Ginzburg and M. A. Mel’nikov, Conditions for protecting steel cathodes during electrolytic production of sodium chlorate, Soy. Chem. Ind., 414–416 (1971).Google Scholar
  130. 125.
    V. A. Shlyapnikov and T. S. Filippov, Cathodic reduction during chlorate production, Elektrokhim. 5, 866–868 (1969); Soy. Electrochem. 5, 806–807 (1969).Google Scholar
  131. 126.
    Solvay & Cie, Austrian Patent 292027 (1971).Google Scholar
  132. 127.
    Chemetics Int. Ltd., Sodium chloride, Chlorine dioxide, Information, 1978.Google Scholar
  133. 128.
    British Patent 1,161,678 (1969).Google Scholar
  134. 129.
    P. Wintzer, Entwicklung und Trend der Chlordioxidbleiche mit integrierter Chlorat-Elektrolyse für die Zellstoffindustrie, Chem. Ing. Tech. 52, 392–398 (1980).CrossRefGoogle Scholar
  135. 130.
    V. de Nora and J.-W. Kühn-von Burgsdorff, Der Beitrag der dimensionsstabilen Anoden (DSA) zur Chlor-Technologie, Chem. Ing. Tech. 47, 125–128 (1975).CrossRefGoogle Scholar
  136. 131.
    L. M. Elina, V. M. Gitneva, V. I. Brystov, and N. M. Shmygul’, Use of ruthenium oxide anodes in chlorate electrolysis, Soy. Electrochem. 10, 59–61 (1974); Elecktrokhim. 10, 68–70 (1974).Google Scholar
  137. 132.
    E. Hausmann, E. Kramer, and H. Vogt, Chloratelektrolyse und Herstellung von Chlordioxid, Chem. Anlagen Verfahren 1970(5), 59–62, 1970(8), 66.Google Scholar
  138. 133.
    I. E. Veselovskaya, E. M. Kuchinskii, and L. V. Morochko, The cathodic reduction of chlorate, Zh. Prikl. Khim. 37, 76–83 (1964); J. Appl. Chem. USSR 37, 85–91 (1964).Google Scholar
  139. 134.
    T. Nagai and T. Takei, Prevention of cathodic reduction with chromium cathode in chlorate production, J. Electrochem. Soc. Jpn. 25, E-108 (1957).Google Scholar
  140. 135.
    V. I. Skripchenko, Ye. P. Drozdetskaya, and K. G. Il’in, Production of sodium chlorate without introducing protective additives, Soy. Chem. Ind. 813–815 (1971); Khim. Prom. (1971).Google Scholar
  141. 136.
    A. T. Kuhn and H. B. H. Hamzah, The effect of electrode roughness and the ratio of anode to cathode area on the performance of an undivided hypochlorite cell, Chem. Ing. Tech. 52, 762–763 (1980).CrossRefGoogle Scholar
  142. 137.
    A. Suter, French Patent 947, 230 (1949).Google Scholar
  143. 138.
    M. Antler and C. A. Butler, Degradation mechanisms of platinum-and rhodium-coated titanium anodes in the electrolysis of chloride and chloride-chlorate solutions, Electrochem. Technol. 5, 126–130 (1967).Google Scholar
  144. 138a.
    R. Piontelli, Degradation mechanisms of platinum-and rhodium-coated titanium anodes in the electrolysis of chloride and chloride-chlorate solutions, Electrochem. Technol. 5, 558–559 (1967).Google Scholar
  145. 139.
    H. Vogt, in Ullmanns Encyklopädie der technischen Chemie, 4th ed. Vol. 9, Verlag Chemie, Weinheim (1975), pp. 553–565.Google Scholar
  146. 140.
    I. Rousar, Calculation of current density distribution and terminal voltage for bipolar electrolyzers; application to chlorate cells, J. Electrochem. Soc. 116, 676–683 (1969).CrossRefGoogle Scholar
  147. 141.
    Pennwalt-Catalytic, information leaflet, 1978.Google Scholar
  148. 142.
    W. Baucke and A. Winsel, Zum H2O2-Problem in Sauerstoff-Diffusionselektroden, Electrochim. Acta 12, 31–40 (1967).CrossRefGoogle Scholar
  149. 143.
    W. H. Sheltmire, in Chlorine. Its Manufacture, Properties and Uses, J. S. Sconce, ed., Reinhold, New York (1962): (a) p. 512ff, (b) p. 516.Google Scholar
  150. 144.
    Société Ugine, French Patent 1, 352, 198 (1962).Google Scholar
  151. 145.
    G. Zenker, Untersuchungen über die katalytische Zersetzung von NaCIO-Lösungen, Dissertation, Technical University of Berlin, 1954.Google Scholar
  152. 146.
    H. Walde, Elektrische Stoffumsetzungen in Chemie und Metallurgie in energiewirtschaftlicher Sicht, Klepzig, Düsseldorf (1968).Google Scholar
  153. 147.
    E. Heubach, in Ullmanns Encyklopädie der technischen Chemie, 4th ed., Vol. 9, Verlag Chemie, Weinheim (1975), p. 544.Google Scholar
  154. 148.
    Anonymous, Chlorine may on the way out, Chem. Week (30 December 1967 ).Google Scholar
  155. 149.
    Anonymous, British to demonstrate electrolytic treatment of sewage in coastal area, Chem. Eng. (N.Y.) 72, 9–10 (4 January 1965 ).Google Scholar
  156. 150.
    Anonymous, Electrolyzed seawater sterilizes sewage wastes, Chem. Eng. (London) 73, 98 (9 May 1966 ).Google Scholar
  157. 151.
    A. T. Kuhn and R. B. Lartey, Electrolytic generation “In-Situ” of sodium hypochlorite, Chem. Ing. Tech. 47, 129–135 (1975).CrossRefGoogle Scholar
  158. 152.
    C. W. Böckmann, Versuch ‘und Beobachtungen über die Wirkungen der galvanischen Electricität durch Volta’s Säule, Ann. Phys. (Leipzig) 8, 137–162 (1801).CrossRefGoogle Scholar
  159. 153.
    J. K. P. Grimm, Einige Versuche mit Volta’s Säule; dass Electricität die thierische Ausdünstung vermehrt; ist Wasser ein Nichtleiter der Wärme? Ann. Phys. (Leipzig) 7, 348–362 (1801).CrossRefGoogle Scholar
  160. 154.
    J. R. Partington, A History of Chemistry, Vol. 4, Macmillan, London (1964), p. 97.Google Scholar
  161. 155.
    A. J. Balard, Recherches sur la nature des combinaisons décolorantes du chlore, Ann. Chim. Phys. 57, 225–304 (1834).Google Scholar
  162. 156.
    P. H. Prausnitz, Studien über die elektrolytische Herstellung von Natriumhypochlorit, Z. Elektrochem. 18 1025–1080 (1912).Google Scholar
  163. 157.
    E. Abel, Hypochlorite und elektrische Bleiche. Theoretischer Teil, Knapp, Halle (Saale ) (1900).Google Scholar
  164. 158.
    W. A. Müller, in Ullmanns Encyklopädie der technischen Chemie, 3rd ed., Vol. 5, Urban und Schwarzenberg, Munich (1954), pp. 501–508.Google Scholar
  165. 159.
    V. Engelhardt, Hypochlorite und elektrische Bleiche. Technisch-konstruktiver Teil, Knapp, Halle (Saale ) (1900).Google Scholar
  166. 160.
    M. Haas, F. Oettel, German Patent 114, 739 (1901).Google Scholar
  167. 161.
    A. T. Kuhn and P. M. Wright, in Industrial Electrochemical Processes, Elsevier, Amsterdam (1971), p. 546.Google Scholar
  168. 162.
    G. Wranglén, Anodes for cathodic protection in sea-water, Ind. Tekn. 90, 75–79 (1968).Google Scholar
  169. 163.
    C. Marshall and J. P. Millington, Loss of platinum from platinized titanium in hypochlorite cells at low electrolyte temperatures, J. Appl. Chem. 19, 298–301 (1969).CrossRefGoogle Scholar
  170. 164.
    West German Patent 1,956,156 (1971).Google Scholar
  171. 165.
    A. F. Adamson, B. G. Lever, and W. F. Stones, The production of hypochlorite by direct electrolysis of sea water: Electrode materials and design of cells for the process, J. Appl. Chem. 13, 483–495 (1963).CrossRefGoogle Scholar
  172. 166.
    J. E. Bennett, Non-diaphragm electrolytic hypochlorite generators, Chem. Eng. Progr. 70 (12), 60–63 (1974).Google Scholar
  173. 167.
    J. B. Cotton and A. C. Wood, Titanium in electrochemical processes, Trans. Inst. Chem. Engrs. 41, 354–359 (1963).Google Scholar
  174. 168.
    Engelhard. U.S. Patent 3, 544, 442 (1970).Google Scholar
  175. 169.
    A. Kuhn, On-site hypochlorite generation, Proc. 21(3), 6–7, (4), 10–12 (1975).Google Scholar
  176. 170.
    G. R. Heal, A. T. Kuhn, and R. B. Lartey, A parametric study and computer-based simulation of an undivided sodium hypochlorite electrolyzer, J. Electrochem. Soc. 124, 1690–1697 (1977).CrossRefGoogle Scholar
  177. 171.
    Anonymous, Available chlorine in situ, information by Diamond Shamrock Corp., Lurgi, 1977.Google Scholar
  178. 172.
    H. B. H. Cooper, U.S. Patent 3,390, 065 (1958).Google Scholar
  179. 173.
    B. D. Yurkevich and B. M. Vrevskii, Electrolytic preparation of hypochlorites using ion-exchange cathodes (in Russian), Izv. Vyssh. Ucheb. Zaved. Khim. Khim. Tekhnol. 13, 1493–1495 (1970); cited in Chem. Abstr. 74, 49003 (1971).Google Scholar
  180. 174.
    V. I. Monasyrskii, Prospects of using highly mineralized thermal waters in the electrolytic preparation of disinfection reagents in water purification installations, Izuch. Ispol’z. Glubin. Tepla Zemli, 247–249 (1973); cited in Chem. Abstr. 80, 74204 (1974).Google Scholar
  181. 175.
    J. C. Schumacher, Perchlorates. Their Properties, Manufacture and Uses; Reinhold, New York (1960).Google Scholar
  182. 176.
    M. Traube, Über die elektrolytische Entstehung des Wasserstoffhyperoxyds an der Kathode, Sitzungsber. Kgl. Preuss. Akad. Wiss. Berlin, 1041–1050 (1887).Google Scholar
  183. 177.
    H. M. Goodwin and E. C. Walker, The electrolytic oxidation of hydrochloric acid to perchloric acid, Trans. Amer. Electrochem. Soc. 40, 157–166 (1922).Google Scholar
  184. 178.
    F. C. Mathers, Electrolytic oxidation of hydrochloric acid to perchloric acid, Proc. Indiana Acad. Sci. 63, 138–139 (1953).Google Scholar
  185. 179.
    W. Müller and P. Jönck, Herstellung von Perchlorsäure durch anodische Oxydation von Chlor, Chem. Ing. Tech. 35, 78–80 (1963).CrossRefGoogle Scholar
  186. 180.
    Y. Kato, K. Sugino, K. Koizumi, and S. Kitahara, Sodium perchlorate production with a pure lead peroxide anode, Electrotech. J. (Jpn.) 5, 45–48 (1941).Google Scholar
  187. 181.
    F. Winteler, Ueber die Bildung von Perchloraten der Alkalien und alkalischen Erden durch Elektrolyse, Chem. Ztg. 22, 89–90 (1898).Google Scholar
  188. 182.
    K. Sugino, Preparation, properties, and application of the lead peroxide electrode manufactured by a new method, Bull. Chem. Soc. Jpn. 23, 115 (1950).CrossRefGoogle Scholar
  189. 183.
    S. Kitahara and T. Ohsuga, The preparation of electrodes of lead peroxide and their applications. Making flat and compact anodes of lead peroxide and their use in electrolytic production of sodium perchlorate, J. Electrochem. Assoc. Jpn. 10, 409–413 (1942).Google Scholar
  190. 184.
    M. Nagalingam, P. Govinda Rao, C. J. Raju, K. C. Narasimham, S. Sampath, and H. V. K. Udupa, Direkte Oxidation von Natriumchlorid zu Natriumperchlorat, Chem. Ing. Tech. 41, 1301–1303 (1969).CrossRefGoogle Scholar
  191. 185.
    H. V. K. Udupa, K. C. Narasimham, et al.,Large-scale preparation of perchlorates directly from sodium chloride, J. Appl. Electrochem. 1, 207–212 (1971).CrossRefGoogle Scholar
  192. 186.
    J. C. Grigger, H. C. Miller, and F. D. Loomis, Lead dioxide anode for commercial use, J. Electrochem. Soc. 105, 100–102 (1958).CrossRefGoogle Scholar
  193. 187.
    A. Legendre, Herstellung von Perchloraten durch Elektrolyse, Chem. Ing. Tech. 34, 379–387 (1962).CrossRefGoogle Scholar
  194. 188.
    J. C. Schumacher and R. D. Stewart in: Kirk-Othmer, Encyclopedia of chemical technology. 2nd edn., Vol. 5, New York: Wiley (1964), p. 62.Google Scholar
  195. 189.
    J. E. Reynolds and T. W. Clapper, The manufacture of perchlorates, Chem. Eng. Progr. 57(11), 138–143 (1961); 57 (12), 94–97 (1961).Google Scholar
  196. 190.
    F. von Stadion, Von den Verbindungen der Chlorine mit dem Sauerstoff, Ann. Phys. (Leipzig) 52, 219 (1816).Google Scholar
  197. 191.
    F. von Stadion, Sur les combinaisons du chlore avec l’oxigène, Ann. Chim. Phys. 8, 406–414 (1818).Google Scholar
  198. 192.
    J. J. Berzelius, Lehrbuch der Chemie, Vol. 2, 3rd ed., Arnoldi, Dresden (1835), p. 77.Google Scholar
  199. 193.
    A. Riche, Recherches sur l’action du courant electrique sur le chlore, le brome, l’iode en présence de l’eau, C.R. Acad. Sci. Paris 46, 348–358 (1858).Google Scholar
  200. 194.
    O. Carlson Swedish Patent 3, 614 (1892).Google Scholar
  201. 195.
    F. Foerster, Über die Darstellung der Überchlorsäure und ihrer Salze, Z. Elektrochem. 4, 386–388 (1898).CrossRefGoogle Scholar
  202. 196.
    F. Winteler, Studien über die Elektrolyse der Chloralkalien, Z. Elektrochem. 5, 49–51, 217–221 (1898).Google Scholar
  203. 197.
    F. Winteler, Über die Bildung von überchlorsauren Salzen durch Elektrolyse, Z. Elektrochem. 7, 635–642 (1901).CrossRefGoogle Scholar
  204. 198.
    W. Oechsli, Über die elektrolytische Chloratbildung, Z. Elektrochem. 9, 807–828 (1903).CrossRefGoogle Scholar
  205. 199.
    C. W. Bennett and E. L. Mack, Electrolytic formation of perchlorate, Trans. Am. Electrochem. Soc. 29, 323–346 (1916).Google Scholar
  206. 200.
    J. G. Williams, The electrolytic formation of perchlorate from chlorate, Trans. Faraday Soc. 15, Part 3, 134–137 (1920).Google Scholar
  207. 201.
    M. P. Grotheer and E. H. Cook, Mechanism of electrolytic perchlorate production, Electrochem. Technol. 6, 221–224 (1968).Google Scholar
  208. 202.
    O. de Nora, P. Gallone, C. Traini, and G. Meneghini, On the mechanism of anodic chlorate oxidation, J. Electrochem. Soc. 116, 146–151 (1969).CrossRefGoogle Scholar
  209. 203.
    J. C. Schumacher, D. R. Stern, and P. R. Graham, Electrolytic production of sodium perchlorate using lead dioxide anodes, J. Electrochem. Soc. 105, 151–155 (1958).CrossRefGoogle Scholar
  210. 204.
    E. Hausmann and E. Kramer, Verarbeitung von Chlorat zu Perchlorat und Chlordioxid, Chem. Ing. Tech. 43, 170–173 (1971).CrossRefGoogle Scholar
  211. 205.
    K. C. Narasimham, S. Sundararajan, and H. V. K. Udupa, Lead dioxide anode in the preparation of perchlorates, J. Electrochem. Soc. 108, 798–805 (1961).CrossRefGoogle Scholar
  212. 206.
    K. Sugino and S. Aoyagi, Studies on the mechanism of the electrolytic formation of perchlorate, J. Electrochem. Soc. 103, 166–171 (1956).CrossRefGoogle Scholar
  213. 207.
    G. Angel and H. Mellquist, Versuche, um einen Ersatz für das Platin als Anodenmaterial bei elektrolytischen Oxydationsprozessen zu finden, Z. Elektrochem. 40, 702–707 (1934).Google Scholar
  214. 208.
    Y. Kato and K. Koizumi, A new process for the lead peroxide anode, J. Electrochem. Assoc. Jpn. 2, 309–312 (1934).Google Scholar
  215. 209.
    J. C. Pernert, U.S. Patent 2,392, 861 (1946).Google Scholar
  216. 210.
    P. Jönck, in Ullmanns Encyklopädie der technischen Chemie, 3rd ed., Suppl. Vol., Urban und Schwarzenberg, Munich (1970), pp. 445–446.Google Scholar
  217. 211.
    P.Jönck, private communication.Google Scholar
  218. 212.
    A. A. Rakov and I. V. Shimonis, U.S.S.R. Patent 512, 677 (1976); cited in Chem. Abstr. 86, 98, 099 (1977).Google Scholar
  219. 213.
    E. Blau and R. Weingand, Notizen über die Erzeugung von Kaliumperchlorat, Z. Elektrochem. 27, 1–10 (1921).Google Scholar
  220. 214.
    C. L. Mantell, Cell design for bromates, iodates, and periodates, J. Electrochem. Soc. 115, 91c (1968).Google Scholar
  221. 215.
    H. Pauli, Beiträge zur Elektrolyse der Alkali-Bromide und -Fluoride, Z. Elektrochem. 3, 474–478 (1897).CrossRefGoogle Scholar
  222. 216.
    J. Sarghel, Über die Elektrolyse der Bromide der Erdalkalien, Z. Elektrochem. 6, 149–158, 173–188 (1899).Google Scholar
  223. 217.
    E. Müller, Über ein elektrolytisches Verfahren zur Gewinung der chlor-, brom-und jodsauren Salze der Alkalien, Z. Elektrochem. 5, 469–473 (1899).CrossRefGoogle Scholar
  224. 218.
    H. Kretzschmar, Über die Einwirkung von Brom auf Alkali und über die Elektrolyse der Bromalkalien, Z. Elektrochem. 10, 789–817 (1904).CrossRefGoogle Scholar
  225. 219.
    W. C. Bray, The hydrolysis of iodine and of bromine, J. Am. Chem. Soc. 32, 932–938 (1910); 33, 1485–1487 (1911).CrossRefGoogle Scholar
  226. 220.
    A. Skrabal, Die Halogenbleichlaugen-Reaktionen, Z. Elektrochem. 40, 232–246 (1934).Google Scholar
  227. 221.
    A. Skrabal, Über die Stärke der unterhalogenigen Säuren, Z. Elektrochem. 48, 314–327 (1942).Google Scholar
  228. 222.
    T. Osuga and K. Sugino, Electrolytic production of bromates, J. Electrochem. Soc. 104, 448 (1957).CrossRefGoogle Scholar
  229. 223.
    S. Sundararajan, K. C. Narasimham, and H. V. K. Udupa, Electrolytic preparation of bromates, Chem. Process Eng. 43, 438–441, 447 (1962).Google Scholar
  230. 224.
    W. Vaubel, Ueber ein neues Verfahren zur elektrolytischen Darstellung von Chloraten, Bromaten, Jodaten, sowie Hypochloriten, Chem. Ztg. 22, 331 (1898).Google Scholar
  231. 225.
    E. Eisner and U. Eisner, German Patent 2,540,926 (1977); Chem. Abstr. 86, 130, 041a (1977).Google Scholar
  232. 226.
    E. A. Dzhafarov and Sh. M. Efendieva, Electrosynthesis of bromates on a lead dioxide anode (in Russian), Azerb. Khim. Zh. 1967(5), 166–169; Chem. Abstr. 69, 24005 (1968).Google Scholar
  233. 227.
    P. J. M. Radford, in Bromine and its Compounds, ( Z. E. Jollies, ed., Benn, London (1966), pp. 164–173.Google Scholar
  234. 228.
    W. Geissler, R. Nitzsche, and R. Landsberg, Über die elektrochemische Oxydation von Jodid und Jod zum Hypojodit an Graphitelektroden, Electrochim. Acta 11, 389–400 (1966).CrossRefGoogle Scholar
  235. 229.
    R. Landsberg, R. Nitzsche, and W. Geissler, Über die elektrochemische Oxydation von Jodid zum Jodat an Graphitelektroden, Electrochim. Acta 11, 495–506 (1966).CrossRefGoogle Scholar
  236. 230.
    M. S. Venkatachalapathy, S. Krishnan, M. Ramachandran, and H. V. K. Udupa, Electrochemical preparation of sodium iodate from iodine using graphite substrate lead dioxide anode, Electrochem. Technol. 5, 399–404 (1967).Google Scholar
  237. 231.
    E. A. Dzhafarov, Sh. M. Efendieva, F. G. Bairamov, and A. M. Musaev, Electrosynthesis of iodates at Pb dioxide anodes, Azerb. Khim. Zh. 1966 (2), 125–129 (Russ.) Chem. Abstr. 65, 117–636 (1966).Google Scholar
  238. 232.
    F. Foerster and K. Gyr, Über die Einwirkung von Jod auf Alkalien, Z. Elektrochem. 9, 1–10 (1903).Google Scholar
  239. 233.
    F. Foerster and K. Gyr, Zur Kenntnis der Elektrolyse von Jodkalium-Lösungen, Z. Elektrochem. 9, 215–226 (1903).CrossRefGoogle Scholar
  240. 234.
    J. C. Schumacher, Electrolytic production of potassium iodate, Chem. Eng. Progr. 56 (5), 83–84 (1960).Google Scholar
  241. 235.
    H. H. Willard and R. R. Ralston, The electrolytic oxidation of iodine and of iodic acid, Trans. Electrochem. Soc. 62, 239–254 (1932).CrossRefGoogle Scholar
  242. 236.
    C. L. Mehltretter and C. S. Wise, An electrolytic process for making sodium metaperiodate, Ind. Eng. Chem. 51, 511–514 (1959).CrossRefGoogle Scholar
  243. 237.
    E. Torigai and E. Ishii, Bull. Osaka Ind. Res. Inst. 7, 195 (1956).Google Scholar
  244. 238.
    E. Müller and O. Friedberger, Die Darstellung der freien Uberjodsäure durch Elektrolyse. Ber. Dt. Chem. Ges. 35, 2652–2659 (1902).CrossRefGoogle Scholar
  245. 239.
    Sh. Sh. Khidirov, D. P. Semichenko, and V. I. Lyubushkin, U.S.S.R. Patent 217, 384.Google Scholar
  246. 240.
    B. Kastening, Synthese von Wasserstoffperoxid, paper read at the 13th Tutzing Symposium of Dechema, 1976.Google Scholar
  247. 241.
    A. H. H. Schmidt, Technisch-elektrochemische Herstellung von Wasserstoffperoxyd, Chem. Ing. Tech. 37, 832–834 (1965).CrossRefGoogle Scholar
  248. 242.
    R. Powell, Hydrogen Peroxide Manufacture, Noyes, Park Ridge, N.J. (1968).Google Scholar
  249. 243.
    W. C. Schumb, C. N. Satterfield, and R. L. Wentworth, Hydrogen Peroxide, Reinhold, New York (1955).Google Scholar
  250. 244.
    W. Machu, Das Wasserstoffperoxyd und seine Perverbindungen, Springer, Vienna (1951).Google Scholar
  251. 245.
    F. Beer, in Chemische Technologie, Vol. 1, K. Winnacker and L. Kuchler, eds., Hanser, Munich (1970), pp. 525–529.Google Scholar
  252. 246.
    J. Müller in: Ullmanns Encyklopädie der technischen Chemie, vol. 13, 3rd ed., Urban und Schwarzenberg: Munich (1962), p. 212–227.Google Scholar
  253. 247.
    E. Berl and H. Burkhardt, Über die Herstellung von aktiven Kohlen, Z. ang. Chemie 43, 330–333 (1930).CrossRefGoogle Scholar
  254. 248.
    W. G. Berl, A reversible oxygen electrode, Trans. Electrochem. Soc. 83, 253–270 (1944).CrossRefGoogle Scholar
  255. 249.
    D. H. Grangaard, U.S. Patent 3,462,351 (1969), 3,507,769 (1970), 3,592, 749 (1971).Google Scholar
  256. 250.
    B. Kastening and W. Faul, Production of hydrogen peroxide by cathodic reduction of oxygen, Ger. Chem. Eng. 1, 183–190 (1978). Herstellung von Wasserstoffperoxid durch kathodische Reduktion von Sauerstoff, Chemie-Ing.-Technik 49, 911 (1977).CrossRefGoogle Scholar
  257. 251.
    O. Spalek, J. Balej, and K. Balogh, Preparation of hydrogen peroxide by cathodic reduction of oxygen in porous electrodes made of different carbonaceous materials, Collect. Czech. Chem. Commun. 42, 952–959 (1977).CrossRefGoogle Scholar
  258. 252.
    G. Teichner, German Patent 217, 539 (1905).Google Scholar
  259. 253.
    J. Müller, Technisch-elektrochemische Herstellung von Wasserstoffperoxyd, Chem. Ing. Tech. 35, 389–392 (1963).CrossRefGoogle Scholar
  260. 254.
    A. Pietzsch, German Patents 243,366; 241,702; 256, 148.Google Scholar
  261. 255.
    L. Löwenstein and J. D. Riedel, German Patent 510, 064.Google Scholar
  262. 256.
    H. Schröter, Neue Erkenntnisse auf dem Gebiet der Holzschliffbleiche, Papier 21 (1967), 760.Google Scholar
  263. 257.
    F. L. Fennell and N. J. Stalter, Hydrogen peroxide for bleaching kraft pulp, Tappi 51 (1), 62A - 66A (1968).Google Scholar
  264. 258.
    J.-W. Kühn-von Burgsdorff, Platinierte Sondermetall-Elektroden in der Elektrochemie, Chem. Ztg. 88, 597–601 (1964).Google Scholar
  265. 259.
    J.-W. Kühn-von Burgsdorff, Der Einsatz aktivierter Metallanoden in elektrochemischen Prozessen, Chem. Ing. Tech. 49, 294–298 (1977).CrossRefGoogle Scholar
  266. 260.
    J. Terraz and J. Malafosse, German Offen. 2,528,204 (1976); cited in Chem. Abstr. 85, 38, 723 (1976).Google Scholar
  267. 261.
    F. Beer, G. Düsing, and H. Pistor, Wasserstoffperoxid und Peroxoverbindungen in der Anorganischen Chemie Chem. Ztg. 99, 120–125 (1975).Google Scholar
  268. 262.
    Degussa, German Patent 218, 569 (1905).Google Scholar
  269. 263.
    K. Arndt, German Patent 297, 233 (1912).Google Scholar
  270. 264.
    H. Pistor, in Chemische Technologie, K. Winnacker and L. Kuchler, eds., Vol. 1, 3rd ed., Hanser, Munich (1970), pp. 574–575.Google Scholar
  271. 265.
    G. Schaufler, in Ullmanns Encyklopädie der technischen Chemie, 3rd ed., Vol. 12, Urban und Schwarzenberg, Munich (1960), pp. 231–233.Google Scholar
  272. 266.
    H. Marcy, in Anorganisch-technische Verfahren,F. Matthes and G. Wehner, eds., VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1964), (a) p. 750, (b) p. 762.Google Scholar
  273. 267.
    S. Klonowski, Über die Manganatschmelze und die Überführung von Kaliummanganat in Kaliumpermanganat auf elektrolytischen Wege, Dissertation, TH Karlsruhe, 1910.Google Scholar
  274. 268.
    Schering, German Patent 28, 782 (1884).Google Scholar
  275. 269.
    Salzbergwerk Neustassfurt, German Patent 101, 718 (1899).Google Scholar
  276. 270.
    Tumanow, U.S.S.R. Patent 51, 390 (1936).Google Scholar
  277. 271.
    Deissler, German Patent 105, 008 (1898).Google Scholar
  278. 272.
    E. Schutz, Das Kaliumpermanganat, Z. Angew. Chem. 24, 1628–1631 (1911).CrossRefGoogle Scholar
  279. 273.
    B.I.O.S. Final Report No. 964, Item No. 22; B.I.O.S. Final Report No. 1577, Item No. 22 (1947).Google Scholar
  280. 274.
    Carus Chemical Comp., U.S. Patent 2, 908, 620 (1957).Google Scholar
  281. 275.
    W. L. Faith, D. B. Keyes, and R. L. Clark, Industrial Chemicals, Wiley, New York (1965).Google Scholar
  282. 276.
    Anonymous, New British plant boosts potassium permanganate output, Brit. Chem. Eng. 9, 383 (1964).Google Scholar
  283. 277.
    Montecatini, Italian Patent 292, 502 (1932).Google Scholar
  284. 278.
    M. Eigen and K. Kustin, The kinetics of halogen hydrolysis, J. Am. Chem. Soc. 84, 1355–1361 (1962).CrossRefGoogle Scholar
  285. 279.
    C. Häussermann, Beiträge zur Technologie der Alkalidichromate, Dinglers Polytechn. J. 287, 161–162 (1893); Z. Angew. Chem. 6, 363 (1893).Google Scholar
  286. 280.
    F. Regelsberger, Über Regeneration von Chromsäure aus chromoxydhaltigen Materialen, Z. Angew. Chem. 12, 1123–1128 (1899).CrossRefGoogle Scholar
  287. 281.
    V. A. Shlyapnikov, S. I. Statkevich, E. I. Adaev, and L. V. Perevozchikova, Influence of electrolyte pH and temperature on the electrosynthesis of Berthollet’s salt, Zh. Prikl. Khim. 49, 2247–2252 (1976); J. Appl. Chem. USSR 49, 2257–2260 (1976).Google Scholar
  288. 282.
    M. Le Blanc, Die elektrolytische Regeneration von Chromsäure und die Herstellung säurebeständiger Diaphragmen, Z. Elektrochem. 7, 290–295 (1900).CrossRefGoogle Scholar
  289. 283.
    M. Le Blanc, Die Darstellung des Chroms und seiner Verbindungen mit Hilfe des elektrischen Stroms, Knapp, Halle (Saale ) (1902).Google Scholar
  290. 284.
    Farbwerke Höschst, German Patent 103, 860 (1898).Google Scholar
  291. 285.
    M. Käppel, Elektrolytische Regeneration von Chromsäure, Chem. Ing. Tech. 35, 386–389 (1963).CrossRefGoogle Scholar
  292. 292.
    G. Schulze, Die elektrochemische Reduktion chromsäurehaltiger Abwässer, Galvanotech - nik 58, 475–480 (1967).Google Scholar
  293. 287.
    N. Ibl and A. M. Frei, Untersuchungen eines neuen Weges zur Entgiftung chromathaltiger Abwässer durch elektrolytische Reduktion, Galvanotech. Oberflächenschutz 5, 117 (1964).Google Scholar
  294. 288.
    E. Müller and M. Soller, Die Rolle des Bleisuperoxyds als Anode bei der elektrolytischen Oxydation des Chromsulfates zu Chromsäure, Z. Elektrochem. 11, 863–872 (1905).Google Scholar
  295. 289.
    R. F. J. Gross and A. Hickling, The anodic oxidation of chromic salts to chromates, J. Chem. Soc. 325 (1937).Google Scholar
  296. 290.
    F. Regelsberger, Einfluss des Elektrodenmaterials auf den Reaktionsverlauf bei Elektrolysen, Z. Elektrochem. 6, 308 (1899).Google Scholar
  297. 291.
    M. Käppel and H. Gerischer, Zum Mechanismus der elektrolytischen Chromatabscheidung durch Reduktion von Chromsäure, Z. Elektrochem. 64, 235–244 (1960).Google Scholar
  298. 292.
    J. Balej, H. Matschiner, and W. Thiele, Zum Mechanismus der anodischen Bildung von Peroxodisulfaten, Chem. Techn. (Leipzig) 30, 578–581 (1978).Google Scholar
  299. 293.
    J. Billiter, Die technische Elektrolyse der Nichteisenmetalle, Springer, Vienna (1954), p. 105.CrossRefGoogle Scholar
  300. 294.
    M. Le Blanc, German Patent 182, 287 (1905).Google Scholar
  301. 295.
    Verein für chemische und metallurgische Produktion zu Aussig, Austrian Patent 34, 562 (1908).Google Scholar
  302. 296.
    P. Dilthey, in Chemische Technologie, K. Winnacker and E. Weingärtner, eds., Vol. 2, Hanser, Munich (1950), p. 484.Google Scholar
  303. 297.
    German Patent 251,694 (1912).Google Scholar
  304. 298.
    G. Adolph and A. Pietzsch, German Patent 199,248 (1906); British patent 9636 (1907); U.S. Patent 895, 930 (1907).Google Scholar
  305. 299.
    M. J. Udy, U.S. Patent 1,739, 107 (1929).Google Scholar
  306. 300.
    R. H. McKee and S. T. Leo, A continuous process for electrolytic regeneration of chromic acid, J. Ind. Eng. Chem. 12, 16–26 (1920).CrossRefGoogle Scholar
  307. 301.
    P. Askenasy and A. Révai, Beiträge zur Kenntnis der elektrolytischen Regenerierung von Chromsäure aus Lösungen von Chromsulfat, Z. Elektrochem. 19, 344–362 (1913).Google Scholar
  308. 302.
    FIAT Final Report No. 429 (1945).Google Scholar
  309. 303.
    FIAT Final Report No. 831 (1946).Google Scholar
  310. 304.
    C. Hampel, Encylopaedia of Electrochemistry, Reinhold, New York (1964), p. 1065.Google Scholar
  311. 305.
    W. W. Stender and I. J. Seerak, Electrolysis of aqueous solutions of alkali sulfates, Trans. Electrochem. Soc. 68, 493–520 (1935).CrossRefGoogle Scholar
  312. 306.
    C. Jackson and A. T. Kuhn, in Industrial Electrochemical Processes, Elsevier, Amsterdam (1971), p. 517.Google Scholar
  313. 307.
    Anonymous, Stack gas scrubber uses electrochemical cell, Europ. Chem. News, 30 (February 12, 1971 ).Google Scholar
  314. 308.
    A. T. Kuhn, Electrochemical methods for SO2 flue gas treatment, J. Appl. Electrochem. 1, 41–44 (1971).CrossRefGoogle Scholar
  315. 309.
    F. Richarz, Zur Kenntniss der Entstehungsweise von Wasserstoffsuperoxyd an der Anode bei der Electrolyse verdünnter Schwefelsäure, Ann. Physik Chem. 31, 912–924 (1887).CrossRefGoogle Scholar
  316. 310.
    F. Haber, Über die Autoxydation und ihren Zusammenhang mit der Theorie der Ionen und der galvanischen Elemente, Z. Elektrochem. 7, 441–448 (1901).CrossRefGoogle Scholar
  317. 311.
    J. W. Schultze, Die Adsorption von Wasser an Platinelektroden in wässrigen Elektrolyten, Ber. Bunsenges. Phys. Chem. 73, 483–492 (1969).Google Scholar
  318. 312.
    A. Rius Miro and J. Ocon Garcia, Modificacion del poder oxidante de un anodo durante su trabajo, An. Fis. Quim. 40, 861–885 (1944).Google Scholar
  319. 313.
    J. C. Schumacher and D. R. Stern, Large-scale continuous production of ammonium perchlorate, Chem. Eng. Progr. 53 (9), 428–432 (1957).Google Scholar
  320. 314.
    Yu. M. Tyurin, G. F. Volodin, L. A. Smirnova, and Yu. V. Battalova, Effect of solution composition on the properties of oxide films produced on platinum anodes at high positive potentials, Elektrokhim. 9, 532–536 (1973); Soy. Electrochem. 9, 512–516 (1973).Google Scholar
  321. 315.
    P. Wintzer, private communication.Google Scholar
  322. 316.
    E. Berl and H. Burkhardt, Ober die Herstellung von aktiven Kohlen, Z. Angew Chem. 43, 330–333 (1930).CrossRefGoogle Scholar
  323. 317.
    H. H. Willard and G. Frederick Smith, The perchlorates of the alkali and alkaline earth metals and ammonium. Their solubility in water and other solvents, J. Amer. Chem. Soc. 45, 286–297 (1923).CrossRefGoogle Scholar
  324. 318.
    J. C. Schumacher and D. R. Stern, Chem. Eng. Progr. 53 (9), 428–432 (1957).Google Scholar
  325. 319.
    T. W. Richards and H. H. Willard, Further investigation concerning the atomic weights of silver, lithium and chlorine, J. Am. Chem. Soc., 15ff (1910).Google Scholar
  326. 320.
    F. Oettel, Die elektrischen Bleichapparate “System Haas und Oettel,” Z. Elektrochem. 7, 315–320 (1901).CrossRefGoogle Scholar
  327. 321.
    B. Kastening and H. Schmitz, West German Patent 2, 453, 739 (1974).Google Scholar
  328. 322.
    B. Kastening and H. Schmitz, Indirect electrosynthesis of hydrogen peroxide, Symposium on the Engineering Aspects of Electrochemical Synthesis, Dubrovnik, 1975.Google Scholar
  329. 323.
    H. Schmidt, German Patent 941, 543 (1942).Google Scholar
  330. 324.
    W. Thiele and H. Matschiner, Wasserstoffperoxid und Peroxodischwefelsäure, Chem. Tech. (Leipzig) 29, 148–154, 682 (1977).Google Scholar
  331. 325.
    M. Schleiff, W. Thiele, and H. Matschiner, Optimierung von Elektrolysezellen, dargestellt am Beispiel eines Elektrolyseurs für Peroxodischwefelsäure, Chem. Tech. (Leipzig) 29, 679–682 (1977).Google Scholar
  332. 326.
    T. Ya. Krasilova, É. V. Kasatkin, and V. I. Veselovskii, Effect of perchloric acid and molecular chlorine concentration on formation of HC1O4 and 02 during oxidation, Elektrokhim. 6, 356–358 (1970); Soy. Electrochem. 6, 349–351 (1970).Google Scholar
  333. 327.
    A. J. Bard, ed., Encyclopedia of Electrochemistry of the Elements, Vol. 1, Marcel Dekker, New York (1978).Google Scholar
  334. 328.
    M. S. Sherrill and E. F. Izard, The solubility of chlorine in aqueous solutions of chlorides and the free energy of trichloride ion, J. Am. Chem. Soc. 53, 1667–1674 (1931).CrossRefGoogle Scholar
  335. 329.
    E. Berl, A new cathodic process for the production of H2O2, Trans. Electrochem. Soc. 76, 359–369 (1939).CrossRefGoogle Scholar
  336. 330.
    G. Teichner and G. Baum, German Patent 567, 542 (1930).Google Scholar
  337. 331.
    J. Müller, German Patent 975, 825 (1951).Google Scholar
  338. C. A. Adzemjan et al.,U.S.S.R. Patent 167,492 (1957).Google Scholar
  339. 333.
    W. Thiele, East Ger. Patent 27, 961 (1963).Google Scholar
  340. 334.
    W. Thiele, East Ger. Patent 99, 548 (1972).Google Scholar
  341. 335.
    W. Thiele, K. Wildner, and H. Matschiner, Peroxodisulfate in kristallisierter Form, Chem. Tech. (Leipzig) 31, 198–201 (1979).Google Scholar
  342. 336.
    Anonymous, Peroxide by non-electrolytic processes, Chem. Eng. 60(10), 108, 112 (1953).Google Scholar
  343. 337.
    P. W. Sherwood, Wasserstoffperoxyd über petrochemische Rohstoffe, Chem. Ing. Tech. 32, 459–461 (1960).CrossRefGoogle Scholar
  344. 338.
    O. von Schickh, Herstellung von Peroxyden durch Autoxydation, Chem. Ing. Tech. 32, 462 (1960).CrossRefGoogle Scholar
  345. 339.
    J. E. Bennett, private communication, 1979.Google Scholar
  346. 340.
    R. B. Lartey, PhD thesis, Salford, 1977.Google Scholar
  347. 341.
    E. A. Efimov and N. A. Izgaryshev, Kinetic study of the sulfuric acid electrolytic oxidation, Zh. Fiz. Khim. 31, 1141–1149 (1957).Google Scholar
  348. 342.
    E. V. Kasatkin and A. A. Rakov, Kinetics and mechanism of low temperature electrochemical oxidation at high anode potentials, Electrochim. Acta 10, 131–140 (1965).CrossRefGoogle Scholar
  349. 343.
    W. Smit and J. G. Hoogland, The mechanism of the anodic formation of the peroxodisulphate ion on platinum, Electrochim. Acta 16, 1–18, 821–831, 961–979, 981–993 (1971).Google Scholar
  350. 344.
    J. Balej and M. Kadeiâvek, Influence of sulphuric acid concentration on current yield of peroxodisulphate, Collect. Czech. Chem. Commun. 44, 1510–1520 (1979).CrossRefGoogle Scholar
  351. 345.
    R. D. Apfelbach, Regeneration von Beizen Zur Kunststoffgalvanisierung, Galvanotechnik 70, 144–148 (1979).Google Scholar
  352. 346.
    K.-I. Fukuda, C. Iwakura, and H. Tamura, Anodic processes on a titanium-supported ruthenium dioxide electrode at high potentials in a mixture of sulfuric acid and ammonium sulfate, Electrochim. Acta 23, 613–618 (1978).CrossRefGoogle Scholar
  353. 347.
    J. Balej, Effect of Caro’s acid in electrolytic preparation of peroxodisulphates, Collect. Czech. Chem. Commun.,in press.Google Scholar
  354. 348.
    J. Balej, M. Thumorâ, and M. Kadeçàvek, Mechanism of formation of peroxomonosulphuric acid during electrolytic preparation of peroxodisulphates, Collect. Czech. Chem. Commun., 45, 3254 (1980).Google Scholar
  355. 349.
    P. M. v.d. Wiel, L. J. J. Janssen, and J. G. Hooglagd, The electrolysis of a carbonate-borate solution with a platinum anode, Electrochim. Acta 16, 1217–1234 (1971).CrossRefGoogle Scholar
  356. 350.
    A. Frumkin, Adsorption des cations à des potentiels anodiques, Electrochim. Acta 5, 265–290 (1961).CrossRefGoogle Scholar
  357. 351.
    P. Gallone, Trattato di ingegneria elettrochimica, Tamburini, Milano (1973).Google Scholar
  358. 352.
    Yun-Tsao Ts’u and T’ien-Yin Mi, Mechanism for the anodic formation of the persulfate ion, Doklady Akad. Nauk S.S.S.R. 125, 1069–1072 (1959).Google Scholar
  359. 353.
    A. Hickling and A. O. Jones, Anodic formation of persulphate using pulsed current, Trans. Faraday Soc. 62, 494–502 (1966).CrossRefGoogle Scholar
  360. 354.
    A. Rius Miro and J. Ocon Garcia, Accion de las adiciones en la oxidacion anodica del acido sulfurico y sus sales, An. Fis. Quim. 40, 886–896 (1944).Google Scholar
  361. 355.
    A. N. Frumkin, R. I. Kaganovich, M. A. Gerovich, and V. I. Vasil’ev, The mechanism of the anodic persulfate formation, Doklady Akad. Nauk S.S.S.R. 102, 981–983 (1955).Google Scholar
  362. 356.
    A. I. Brodskii, I. F. Franchuk, and V. A. Lunenok-Burmakina, Isotope method of investigation of the electrolytic formation and hydrolysis of persulfate, Doklady Akad. Nauk S.S.S.R. 115, 934–937 (1957).Google Scholar
  363. 357.
    A. N. Frumkin, O. A. Petry, and N. V. Nikolaeva-Fedorovich, On the determination of the value of the charge of the reacting particle and of the constant a from the dependence of the rate of electro-reduction on the potential and concentration of the solution, Electrochim. Acta 8, 177–192 (1963).CrossRefGoogle Scholar
  364. 358.
    R. Memming, Mechanism of the electrochemical reduction of persulfates and hydrogen peroxide, J. Electrochem. Soc. 116, 785–790 (1969).CrossRefGoogle Scholar
  365. 359.
    N. V. Nikolaeva-Fedorovich, B. B. Damaskin, and O. A. Petrii, Effect of surface-active organic substances on the electroreduction of anions, Coll. Czech. Chem. Commun. 25, 2982–2992 (1960).Google Scholar
  366. 360.
    W. J. Plieth, Kinetik der Manganat/Permanganat-Redoxelektrode an Platin und Gold, Ber. Bunsenges. 74, 1042 (1970).Google Scholar
  367. 361.
    H. Schurig and K. E. Heusler, Anwendung der rotierenden Scheiben-Ring-Elektrode zur Untersuchung der Reduktion von Permanganat in alkalischen Lösungen, Fresenius Z. Analyt. Chem. 224, 45–62 (1967).CrossRefGoogle Scholar
  368. 362.
    R. Thiele and R. Landsberg, Zum Mechanismus der Manganat-VI-PermanganatRedoxelektrode, Z. phys. Chem. 236, 261–270 (1967).Google Scholar
  369. 363.
    A. Schmidt, Angewandte Elektrochemie, Verlag Chemie, Weinheim (1976).Google Scholar
  370. 364.
    W. M. Weigert, Wasserstoffperoxid und seine Derivate, Hüthig, Heidelberg (1978).Google Scholar
  371. 365.
    P. C. Wang, Y. C. Chu, and F. Y. Cheng, Mechanism of anodic formation of perchlorate ions on platinum electrodes. Chun-Kuo K’o Hsueh Yuan Ying Yung Hua Hsueh Yen Chiu Chi K’an 1966 (16). 18–24: cited in Chem. Abstr. 67, 17232–17234 (1967).Google Scholar
  372. 366.
    H. Narcus, Plating on Plastics: practical plant operation and trouble shooting, Plating 55, 816–820 (1968).Google Scholar
  373. 367.
    F. Hine, M. Yasuda, T. Noda, T. Yoshida, and J. Okuda, Electrochemical behavior of the oxide-coated metal anodes, J. Electrochem. Soc. 126, 1439–1445 (1979).CrossRefGoogle Scholar
  374. 368.
    V. I. Veselovsky, E. V. Kasatkin, A. A. Yakovleva, and A. A. Rakov, Structure of the double layer and kinetics of anodic processes at high potentials, Electrochim. Acta 17, 2095–2101 (1972).CrossRefGoogle Scholar
  375. 369.
    J. Balej and M. Kadeiâvek, Effect of various cations on the initial rate of formation of peroxodisulphates, Coll. Czech. Chem. Commun., 45, 2272–2282 (1980).Google Scholar
  376. 370.
    J. Balej, K. Balogh, and O. palek, Possibility of producing hydrogen peroxide by cathodic reduction of oxygen. Influence of pretréatment of active carbon on the properties of porous carbon electrodes for preparing hydrogen peroxide by cathodic reduction of oxygen, Chem. Zvesti 30, 384, 611 (1976).Google Scholar
  377. 371.
    C. Oloman and A. P. Watkinson, Hydrogen peroxide production in trickle-bed electrochemical reactors, J. Appl. Electrochem. 9, 117–123 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • N. Ibl
    • 1
  • H. Vogt
    • 2
  1. 1.Technisch-Chemisches LaboratoriumEidgenössische Technische Hochschule ZürichZürichSwitzerland
  2. 2.Fachbereich VerfahrenstechnikTechnische Fachhochschule BerlinBerlin 65West Germany

Personalised recommendations