Advertisement

Production of Chlorine

  • Donald L. Caldwell
Part of the Comprehensive Treatise of Electrochemistry book series (volume 2)

Abstract

Chlorine and its coproduct, sodium hydroxide (caustic soda), are significant factors in the world economy. They are indispensable intermediates for the chemical industry, and also possess important uses in a variety of other industries. Chlorine is second to aluminum as a consumer of electricity among the electrolytic processes. Direct current (dc) power for chlorine cells accounts for nearly 2% of all electric power generated in the United States.(1)

Keywords

Current Efficiency Caustic Soda Graphite Anode Membrane Cell Metal Anode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. R. Beck, in Proceedings of the Workshop on Energy Conservation in Industrial Electrochemical Processes, Argonne National Laboratory Report No. ANL/OEPM-77–1, August 1976, pp. 37–82.Google Scholar
  2. 2.
    J. J. Leddy, I. C. Jones, Jr., B. S. Lowry, F. W. Spillers, R. E. Wing, and C. D. Binger, Alkali and Chlorine Products, in Encyclopedia of Chemical Technology, 3rd ed., Vol. 1, John Wiley and Sons, New York (1978), pp. 799–865.Google Scholar
  3. 3.
    Y-C. Yen, Chlorine, Process Economic Program Report No. 61B, Stanford Research Institute, Menlo Park, California, November 1978, p. 3.Google Scholar
  4. 4.
    J. Renner and K. E. Woodard, Jr., Report of the electrolytic industries, presented at the Electrochemical Society Meeting, Boston, Massachusetts, May 1979, p. 4.Google Scholar
  5. 5.
    Chemical Origins and Markets, Stanford Research Institute, Menlo Park, California, 1967.Google Scholar
  6. 6.
    L. R. Belohlav and E. T. McBee, in Chlorine—Its Manufacture, Properties and Uses, A.C.S. Monograph 154, J. S. Sconce, ed., Reinhold, New York (1962), Chap. 1, pp. 1–9.Google Scholar
  7. 7.
    H. W. Schultze, The chlorine industry—past, present and future, in Chlorine Bicentennial Symposium, Electrochemical Society, Princeton, New Jersey (1974), pp. 1–19.Google Scholar
  8. 8.
    M. S. Kircher, in Chlorine—Its Manufacture, Properties and Uses, A.C.S. Monograph 154, J. S. Sconce, ed., Reinhold, New York (1962), Chap. 5, pp. 81–126.Google Scholar
  9. 9.
    W. C. Gardiner, Castner, a pioneer inventor in alkali-chlorine, in Chlorine Bicentennial Symposium, Electrochemical Society, Princeton, New Jersey (1974), pp. 35–43.Google Scholar
  10. 10.
    K. E. Stuart, U.S. Patent 1,865, 152 (1932).Google Scholar
  11. 11.
    R. B. MacMullin, in Chlorine—Its Manufacture, Properties and Uses, A.C.S. Monograph 154, J. S. Sconce, ed., Reinhold, New York (1962), Chap. 6, pp. 127–199.Google Scholar
  12. 12.
    D. W. F. Hardie, Electrolytic Manufacture of Chemicals from Salt, 2nd ed., The Chlorine Institute, New York (1975), pp. 77–78.Google Scholar
  13. 13.
    G. Faita, P. Longhi, and T. Mussini, Standard potentials of the Cl2/C1- electrode at various temperatures with related thermodynamic functions, J. Electrochem. Soc. 114, 340–343 (1967).CrossRefGoogle Scholar
  14. 14.
    R. B. MacMullin, Algorithms for the vapor pressure of water over aqueous solutions of salt and caustic soda, J. Electrochem. Soc. 116, 416–419 (1969).CrossRefGoogle Scholar
  15. 15.
    J. E. Currey and G. G. Pumplin, Chloralkali, in Encyclopedia of Chemical Processing and Design, Vol. 7, Marcel Dekker, New York (1978), pp. 305–450.Google Scholar
  16. 16.
    R. E. De La Rue and C. W. Tobias, On the conductivity of dispersions, J. Electrochem. Soc. 106, 827–833 (1959).CrossRefGoogle Scholar
  17. 17.
    F. Hine and K. Murakami, Bubble effects on the solution it-drop in a vertical electrolyzer under free and forced convection flow conditions, presented at the Electrochemical Society Meeting, Boston, Massachusetts, May 1978, Abstract No. 281.Google Scholar
  18. 18.
    D. Dobos, Electrochemical Data, Elsevier, Amsterdam (1975), p. 85.Google Scholar
  19. 19.
    L. I. Kheifets and A. B. Gol’dberg, The rate of anolyte circulation in diaphragm-type electrolysis cells, Soy. Electrochem. (Engl. Transi.) 10, 1140–1147 (1974).Google Scholar
  20. 20.
    F. Hine and M. Yasuda, Studies on the deposited asbestos diaphragm with a miniature diaphragm-type chlorine cell, J. Electrochem. Soc. 118, 166–173 (1971).CrossRefGoogle Scholar
  21. 21.
    F. Hine, M. Yasuda, and T. Tanaka, Mass transfer through the deposited asbestos diaphragm in chlor-alkali cells, Electrochem. Acta 22, 429–437 (1977).CrossRefGoogle Scholar
  22. 22.
    Z. Nagy, A mechanistic model for the calculation of material balance for a diaphragm type chlorine caustic cell, J. Electrochem. Soc. 124, 91–95 (1977).CrossRefGoogle Scholar
  23. 23.
    F. Hine and M. Yasuda, Studies on the cathodic reaction in the diaphragm-type chlorine cell, J. Electrochem. Soc. 118, 170–173 (1971).CrossRefGoogle Scholar
  24. 24.
    I. E. Veselovskaya, E. M. Kuchinskii, and L. V. Morochko, The cathodic reduction of chlorate, J. Appl. Chem. USSR (Engl. Transi.) 37, 85–91 (1964).Google Scholar
  25. 25.
    J. M. McIntyre, Thermal temperature coefficients of the hydrogen electrode, presented at the Electrochemical Society Meeting, Seattle, Washington, May 1978, Abstract No. 541.Google Scholar
  26. 26.
    L. I. Krishtalik, G. L. Melikova, and E. G. Kalinina, Investigation of the effect of electrolysis conditions on the stability of graphite anodes in the chlorine cell, J. Appl. Chem. USSR (Engl. Transl.) 34, 1464–1469 (1961).Google Scholar
  27. 27.
    L. E. Vaaler, Graphite anodes in brine electrolysis, J. Electrochem. Soc. 107, 691–698 (1960).CrossRefGoogle Scholar
  28. 28.
    L. E. Vaaler, Graphite-electrolytic anodes, Electrochem. Technol. 5, 170–174 (1967).Google Scholar
  29. 29.
    F. Hine, M. Yasuda, I. Sugiura, and T. Noda, Effects of the active chlorine and the pH on consumption of graphite anode in chlor-alkali cells, J. Electrochem. Soc. 121, 220–225 (1974).CrossRefGoogle Scholar
  30. 30.
    Chem. Eng. (N. Y) 86, 45 (December 18, 1978 ).Google Scholar
  31. 31.
    R. H. Stevens, U.S. Patent 1,077, 894 (1913).Google Scholar
  32. 32.
    J. B. Cotton, E. C. Williams, and A. H. Barber, U.K. Provisional Patent Spec. 22619 (1957); U.K. Patent 877, 901 (1961).Google Scholar
  33. 33.
    H. B. Beer, Neth. Patent Appl. 216,199 (1957); U.S. Patent 3,236, 756 (1966).Google Scholar
  34. 34.
    D. B. Rogers, R. D. Shannon, A. W. Sleight, and J. L. Gillson, Crystal chemistry of metal dioxides with rutile-related structures, Inorg. Chem. 8, 841–849 (1969).CrossRefGoogle Scholar
  35. 35.
    H. B. Beer, Living from invention, Chem. Ind. (London), 491–496 (July 15, 1978 ).Google Scholar
  36. 36.
    H. B. Beer, S. African Patent 2667 /66 (1967).Google Scholar
  37. 37.
    H. B. Beer, U.S. Patents 3,711,385 (1973), 3,632, 498 (1972).Google Scholar
  38. 38.
    K. J. O’Leary, U.S. Patent 3,776,834 (1973).Google Scholar
  39. 39.
    V. deNora, Ion selective electrodes, presented at the Electrochemical Society Meeting, Seattle, Washington, May 1978, Abstract No. 458.Google Scholar
  40. 40.
    S. Pizzini and G. Bianchi, Oxides with metallic conductivity, in The Science of Materials Used in Advanced Technology, John Wiley and Sons, New York (1973), Chap. 10, pp. 229–241.Google Scholar
  41. 41.
    D. C. Cronemeyer, Electrical and optical properties of rutile single crystals, Phys. Rev. 87, 876–886 (1952).CrossRefGoogle Scholar
  42. 42.
    H. P. R. Frederikse, Recent studies on rutile (TiO2), J. Appl. Phys. Suppl. 32 (10), 2211–2215 (1961).CrossRefGoogle Scholar
  43. 43.
    J. Riga, C. Tenret-Noël, J. J. Pireaux, R. Caudano, and J. J. Verbist, Electronic structure of rutile oxides TiO2, RuO2 and IrO2 studied by x-ray photoelectron spectroscopy, Phys. Scr. 16, 351–354 (1977).CrossRefGoogle Scholar
  44. 44.
    G. Lodi, E. Sivieri, A. DeBattisti, and S. Trasatti, Ruthenium dioxide-based film electrodes, J. Appl. Electrochem. 8, 135–143 (1978).CrossRefGoogle Scholar
  45. 45.
    F. Hine, M. Yasuda, and T. Yoshida, Studies on the oxide-coated metal anodes for chlor-alkali cells, J. Electrochem. Soc. 124, 500–505 (1977).CrossRefGoogle Scholar
  46. 46.
    L. J. J. Janssen, L. M. C. Starmans, J. G. Visser, and E. Barendrecht, Mechanism of the chlorine evolution on a ruthenium oxide/titanium oxide electrode and on a ruthenium electrode, Electrochem. Acta 22, 1093–1100 (1977).CrossRefGoogle Scholar
  47. 47.
    G. Faita and G. Fiori, Anodic discharge of chloride ions on oxide electrodes, J. Appl. Electrochem. 2, 31–35 (1972).CrossRefGoogle Scholar
  48. 48.
    A. T. Kuhn and P. M. Wright, in Industrial Electrochemical Processes, A. T. Kuhn, ed., Elsevier, Amsterdam (1971), p. 533.Google Scholar
  49. 49.
    T. Matsumura, R. Itai, M. Shibuya, and G. Ishi, Electrolytic manufacture of sodium chlorate with magnetite anodes, Electrochem. Technol. 6, 402–404 (1968).Google Scholar
  50. 50.
    P. P. Anthony, U.S. Patent 3,711, 382 (1973).Google Scholar
  51. 51.
    A. Martinsons, U.S. Patent 3,711, 397 (1973).Google Scholar
  52. 52.
    G. N. Kokhanov, R. A. Agapova, F. I. Mulina, V. V. Avksent’ev, V. L. Kubasov, Yu. V. Dobrov, N. G. Baranova, S. A. Avdeeva, R. I. Kuznetsova, F. V. Kupovich, and Yu. M. Filimonov, USSR Patent 492, 301 (1975).Google Scholar
  53. 53.
    M. B. Konovalov, V. I. Bystrov, and V. L. Kubasov, A probe method for the study of the electrochemical characteristics of cobalt oxide anodes, Soy. Electrochem. (Engl. Transl.) 11, 218–220 (1975).Google Scholar
  54. 54.
    M. B. Konovalov, V. I. Bystrov, and V. L. Kubasov, Titanium-base cobalt oxide electrodes, Soy. Electrochem. (Engl. Transi.) 12, 1160–1162 (1976).Google Scholar
  55. 55.
    R. A. Agapova and G. N. Kokhanov, Electrochemical properties of cobalt oxide anodes, Soy. Electrochem. (Engl. Transi.) 12, 1505–1508 (1976).Google Scholar
  56. 56.
    D. L. Caldwell and R. J. Fuchs, U.S. Patent 3,977, 958 (1976).Google Scholar
  57. 57.
    D. L. Caldwell and M. J. Hazelrigg, U.S. Patent 4,142, 005 (1979).Google Scholar
  58. 58.
    M. J. Hazelrigg and D. L. Caldwell, Cobalt oxide based chlorine cell anodes, presented at the Electrochemical Society Meeting, Seattle, Washington, May 1978, Abstract No. 457.Google Scholar
  59. 59.
    M. J. Hazelrigg and D. L. Caldwell, U.S. Patent 4,061, 549 (1977).Google Scholar
  60. 60.
    M. D. Zholudev and V. V. Stender, Overvoltage in the evolution of hydrogen from alkaline solutions, J. Appl. Chem. USSR (Engl. Transi.) 31, 711–715 (1958).Google Scholar
  61. 61.
    N. P. Fedom’ev, N. V. Berezina, and E. G. Kruglova, Cathodes with positive potential of hydrogen formation, Zh. Prikl. Khim. 21, 317–328 (1948).Google Scholar
  62. 62.
    K. Sasaki and R. Matsui, Japan. Patent 31–6611 (1956).Google Scholar
  63. 63.
    Hooker Chemicals and Plastics Corp., Neth. Patent Appl. 75–07550 (1976).Google Scholar
  64. 64.
    J. R. Brannan and I. Malkin, U.S. Patent 4,024, 044 (1977).Google Scholar
  65. 65.
    R. B. MacMullin, German Patent Appl. 2, 704, 213 (1977).Google Scholar
  66. 66.
    J. R. Brannan, I. Malkin, and C. M. Brown, U.S. Patent 4,104, 133 (1978).Google Scholar
  67. 67.
    J. R. Hall and J. T. Van Gemert, U.S. Patent 3,291, 714 (1966).Google Scholar
  68. 68.
    S. D. Gokhale, U.S. Patent 3,974, 058 (1976).Google Scholar
  69. 69.
    H. H. Hoekje, H. B. Johnson, and R. D. Chamberlin, U.S. Patent 3,990, 957 (1976).Google Scholar
  70. 70.
    W. W. Carlin, U.S. Patent 4,010, 085 (1977).Google Scholar
  71. 71.
    H. C. Kuo, R. L. Dotson, and K. E. Woodard, U.S. Patent 4,033, 837 (1977).Google Scholar
  72. 72.
    A. Martinsons and H. B. Johnson, U.S. Patent 4,105, 516 (1978).Google Scholar
  73. 73.
    D. W. Carnell and C. R. S. Needes, Energy-saving catalytically active cathodes for caustic-chlorine production, presented at the Electrochemical Society Meeting, Boston, Massachusetts, May 1979, Abstract No. 260.Google Scholar
  74. 74.
    W. W. Carlin and W. B. Darlington, Activated cathodes for reduced power consumption in electrolytic cells, presented at the Electrochemical Society Meeting, Boston, Massachusetts, May 1979, Abstract No. 261.Google Scholar
  75. 75.
    I. Malkin and J. R. Brannan, Reduction of hydrogen overpotential in a chlorine cell, presented at the Electrochemical Society Meeting, Boston, Massachusetts, May 1979, Abstract No. 262.Google Scholar
  76. 76.
    G. Gritzner, U.S. Patents 4,035,254 and 4,035, 255 (1977).Google Scholar
  77. 77.
    Internat. Electrochem. Progr. 7(73), 9 (January 1978).Google Scholar
  78. 78.
    R. L. Dotson, Modern electrochemical technology, Chem. Eng. (N. Y.) 85, 106–118 (July 17, 1978 ).Google Scholar
  79. 79.
    J. S. Newman, Electrochemical Systems, Prentice-Hall, Englewood Cliffs, New Jersey (1973), p. 9.Google Scholar
  80. 80.
    T. Mukaibo, Technical analysis of diaphragm cells for the electrolysis of NaC1 solution, Denki Kagaku 20, 482–489 (1952).Google Scholar
  81. 81.
    V. V. Stender, O. S. Ksenzhek, and V. N. Lazarev, Alkali transfer and current efficiency in electrolysis of solutions of chlorides in diaphragm cells, J. Appl. Chem. USSR (Engl. Transi.) 40, 1245–1249 (1967).Google Scholar
  82. 82.
    O. S. Ksenzhek and V. M. Serebrit-skii, Theory of current efficiency in the electrolytic preparation of chlorine and alkali by the diaphragm method, Soy. Electrochem. (Engl. Transi.) 4, 1294–1300 (1968).Google Scholar
  83. 83.
    V. M. Serebrit-skii and O. S. Ksenzhek, Measurement of transport numbers of hydroxyl ions in mixed highly concentrated solutions of alkali and sodium chloride, J. Appl. Chem. USSR (Engl. Trans].) 43, 69–71 (1970).Google Scholar
  84. 84.
    V. M. Serebrit-skii and O. S. Ksenzhek, Theory of current yield during the electrolytic production of chlorine and alkali by the diaphragm method. II, Soy. Electrochem. (Engl. Transi.) 7, 1592–1596 (1971).Google Scholar
  85. 85.
    I. S. Stepanyan, Checking the theory of the unsteady condition for electrolysis of a sodium chloride solution in industrial cells with vertical filtering diaphragms, Soy. Electrochem. (Engl. Transi.) 9, 810–812 (1973).Google Scholar
  86. 86.
    V. L. Kubasov, Estimation of the thickness of the filtering diaphragm of electrolysis vessels for the preparation of chlorine and alkali, Sou. Electrochem. (Engl. Transi.) 12, 72–75 (1976).Google Scholar
  87. 87.
    L. I. Kheifets and A. B. Gol’dberg, Macrokinetics and chlorine cells with filter-action diaphragms. I. The effect of secondary processes on the current yield, Soy. Electrochem. (Engl. Transi.) 12, 1525–1528 (1976).Google Scholar
  88. 88.
    A. B. Gol’dberg and L. I. Kheifets, Macrokinetics chlorine cells with filter action diaphragm. II. Temperature dependence on the current yield, and the limits of the effect of anolyte resaturation, Soy. Electrochem. (Engl. Trans].) 12, 1555–1558 (1976).Google Scholar
  89. 89.
    H. Kaden and A. Pohl, Concerning porosity and pore structure of asbestos diaphragms, Chem. Tech. (Leipzig) 30, 25–28 (1978).Google Scholar
  90. 90.
    J.-A. Leduc, U.S. Patent 3,694, 281 (1972).Google Scholar
  91. 91.
    W. B. Darlington and R. T. Foster, U.S. Patent 3,853, 721 (1974).Google Scholar
  92. 92.
    R. N. Beaver and C. W. Becker, U.S. Patent 4,093, 533 (1978).Google Scholar
  93. 93.
    R. Goldsmith, U.S. Patent 3,281, 511 (1966).Google Scholar
  94. 94.
    W. G. Grot, U.S. Patent 3,702, 267 (1972).Google Scholar
  95. 95.
    C. Valiance, U.S. Patent 3,930, 979 (1976).Google Scholar
  96. 96.
    H. Shibata, Y. Kokubu, and I. Okazaki, The Nobel diaphragm cell: a flexible design for high currents and its performance characteristics at 330 kA, in Diaphragm Cells for Chlorine Production, Society of Chemical Industry, London (1977), pp. 53–65.Google Scholar
  97. 97.
    J. E. Currey and J. W. Ahern, Hooker’s membrane cell at Reed Paper Ltd.’s Dryden, Ontario plant, presented at the 19th Chlorine Institute Chlorine Plant Manager’s Seminar, Montreal, Quebec, February 1976.Google Scholar
  98. 98.
    K. J. O’Leary, Membrane chlorine cell design and operation, in Diaphragm Cells for Chlorine Production, Society of Chemical Industry, London (1977), pp. 103–115.Google Scholar
  99. 99.
    Symposium on Fluorocarbon Ion Exchange Membranes, Electrochemical Society Meeting, Atlanta, Georgia, October 1977, Abstract Nos. 436–443.Google Scholar
  100. 100.
    E. H. Price and D. E. Maloney, Nafion perfluorosulfonic acid membranes for the production of chlorine and caustic soda, presented at the 21st Chlorine Institute Chlorine Plant Manager’s Seminar, Houston, Texas, February 1978.Google Scholar
  101. 101.
    D. R. Pulver, The Commercial use of membrane cells in chlorine-caustic plants, presented at the 21st Chlorine Institute Chlorine Plant Manager’s Seminar, Houston, Texas, February 1978.Google Scholar
  102. 102.
    Y. Oda, M. Suhura, and E. Endo, U.S. Patent 4,065, 366 (1977).Google Scholar
  103. 103.
    H. Ukihashi and T. Asawa, Ion exchange membrane for chlor-alkali process, presented at the Electrochemical Society Meeting, Philadelphia, Pennsylvania, May 1977, Abstract No. 247.Google Scholar
  104. 104.
    M. Seko, The ion-exchange membrane chlor-alkali process, Ind. Eng. Chem. Prod. Res. Dey. 15, 286–292 (1976).CrossRefGoogle Scholar
  105. 105.
    M. P. Grotheer and C. J. Harke, The development of Hooker’s H-2A and H-4 cells, in Chlorine Bicentennial Symposium, Electrochemical Society, Princeton, New Jersey (1974), pp. 209–217.Google Scholar
  106. 106.
    J. E. Currey, Recent advances in Hooker chlor-alkali cell technology, in Diaphragm Cells for Chlorine Production, Society of Chemical Industry, London (1977), pp. 79–91.Google Scholar
  107. 107.
    R. E. Loftfield and H. W. Laub, U.S. Patent 3,591, 483 (1971).Google Scholar
  108. 108.
    E. I. Fogelman U.S. Patent 3, 674, 676 (1972).Google Scholar
  109. 109.
    T. A. Liederbach, Technical advances in diaphragm chlorine cells, in Diaphragm Cells for Chlorine Production, Society of Chemical Industry, London (1977), pp. 41–52.Google Scholar
  110. 110.
    R. M. Hunter, L. B. Otis, and R. D. Blue, U.S. Patent 2,282, 058 (1942).Google Scholar
  111. 111.
    V. deNora, Chlorine production using Glanor cells, Chem. Ing. Tech. 47, 141 (1975).CrossRefGoogle Scholar
  112. 112.
    Internat. Electrochem. Progr. 7 (82), 7. October 1978.Google Scholar
  113. 113.
    S. A. Dahl, Chlor-alkali cell features new ion-exchange membrane, Chem. Eng. (N.Y) 82, 60–61 (August 18, 1975 ).Google Scholar
  114. 114.
    R. E. Hulme, U.S. Patent 2,765, 873 (1956).Google Scholar
  115. 115.
    T. Hooker and R. H. Miller, U.S. Patent 2,750, 002 (1956).Google Scholar
  116. 116.
    D. L. Caldwell and R. J. Fuchs, U.S. Patent 4,073, 873 (1978).Google Scholar
  117. 117.
    T. G. Coker, SPE brine electrolyzers, presented at the Oronzio deNora Symposium on Chlorine Technology, Venice Lido, Italy, May 1979.Google Scholar
  118. 118.
    S. Ogawa, Asahi Chemical membrane chlor-alkali process, presented at the Seminar on Developments in Chlor-Alkali Industry, Indian Institute of Chemical Engineers, New Delhi, India, March 1980.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Donald L. Caldwell
    • 1
  1. 1.The Dow Chemical CompanyFreeportUSA

Personalised recommendations