Miscellaneous Aspects of Iron Metabolism

  • Anatoly Bezkorovainy
Part of the Biochemistry of the Elements book series (BOTE, volume 1)


The preceding chapters have amply demonstrated the crucial role that iron plays in the process of life. These chapters have dealt with a number of topics which have received much attention from biomedical researchers and are especially important in human health and disease. A number of subjects dealing with nonheme iron have not been mentioned in this volume, and this chapter is designed to survey such areas, where a considerable body of knowledge is available.


Tyrosine Hydroxylase Ferrous Iron Iron Metabolism Phenylalanine Hydroxylase Acinetobacter Calcoaceticus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleem, M. I. H., Lees, H., and Nicholas, D. J. D., 1963. Adenosine triphosphate-dependent reduction of nicotinamide adenine dinucleotide by ferrocytochrome c in chemoautotrophic bacteria, Nature (London) 200: 759–761.CrossRefGoogle Scholar
  2. Allerton, S. E., and Perlmann, G. E., 1965. Chemical characterization of the phosphoprotein phosvitin, J. Biol. Chem. 240: 3892–3898.PubMedGoogle Scholar
  3. Clark, R. C., 1970. The isolation and composition of two phosphoproteins from hen’s egg, Biochem. J. 118: 537–542.PubMedGoogle Scholar
  4. Clark, R. C., 1972. Sephadex fractionation of phosvitins from duck, turkey and ostrich egg yolk, Comp. Biochem. Physiol. B 41: 891–903.PubMedCrossRefGoogle Scholar
  5. Cobley, J. G., and Haddock, B. A., 1975. The respiratory chain of Thiobacillus ferrooxidans: The reduction of cytochromes by Fe2+ and the preliminary characterization of rustacyanin, a novel “blue” copper protein, FEBS Lett. 60: 29–33.PubMedCrossRefGoogle Scholar
  6. Darnall, D. W., Garbett, K., Klotz, I. M., Aktipis, S., and Keresztes-Nagy, S., 1969. Optical rotatory properties of hemerythrin in the ultraviolet range, Arch. Biochem. Biophys. 133: 103–107.PubMedCrossRefGoogle Scholar
  7. Dunn, J. B. R., Addison, A. W., Bruce, R. E., Loehr, J. S., and Loehr, T. M., 1977. Comparison of hemerythrins from four species of sipunculids by optical absorption, circular dichroism, fluorescence emission, and resonance Raman spectroscopy, Bio-chemistry 16: 1743–1749.Google Scholar
  8. Fisher, D. B., Kirkwood, R., and Kaufman, S., 1972. Rat liver phenylalanine hydroxylase, an iron enzyme, J. Biol. Chem. 247: 5161–5167.PubMedGoogle Scholar
  9. Forrest, W. W., and Walker, D. J., 1971. The generation and utilization of energy during growth, Adv. Microb. Physiol. 5: 213–274.PubMedCrossRefGoogle Scholar
  10. Fujisawa, H., and Hayaishi, O., 1968. Protocatechuate 3, 4-dioxygenase. I. Crystallization and characterization, J. Biol. Chem. 243: 2673–2681.PubMedGoogle Scholar
  11. Fujisawa, H., Uyeda, M., Kojima, Y., Nozaki, M., and Hayaishi, O., 1972. Protocatechuate 3,4-dioxygenase. II. Electron spin resonance and spectral studies on interaction of substrates and enzyme, J. Biol. Chem. 247: 4414–4421.PubMedGoogle Scholar
  12. Gormley, P. M., Loehr, J. S., Brimhall, B., and Hermodson, M. A., 1978. New evidence for glutamic acid as an iron ligand in hemerythrin, Biochem. Biophys. Res. Commun. 85: 1360–1366.PubMedCrossRefGoogle Scholar
  13. Gray, H. B., 1975. Polynuclear iron(III) complexes, in Proteins of Iron Storage and Transport in Biochemistry and Medicine, R. R. Crichton (ed.), North-Holland, Amsterdam, pp. 3–13.Google Scholar
  14. Grizzuti, K., and Perlmann, G. E., 1970. Conformation of the phosphoprotein phosvitin, J. Biol. Chem. 245: 2573–2578.PubMedGoogle Scholar
  15. Gunsalus, I. C., Pederson, T. C., and Sligar, S. G., 1975. Oxygenase-catalyzed biological hydroxylations, Annu. Rev. Biochem. 44: 377–407.PubMedCrossRefGoogle Scholar
  16. Hayaishi, O. (ed.), 1974. Molecular Mechanisms of Oxygen Activation, Academic Press, New York.Google Scholar
  17. Hegenauer, J., Saltman, P., and Nace, G., 1979. Iron III-phosphoprotein chelates. Stoichiometric equilibrium constant for interaction of iron III and phosphoserine residues of phosvitin and casein, Biochemistry 18: 3865–3875.PubMedCrossRefGoogle Scholar
  18. Hendrickson, W. A., Klippenstein, G. L., and Ward, K. B., 1975. Tertiary structure of myohemerythrin at low resolution, Proc. Natl. Acad. Sci. U.S.A. 72: 2160–2164.PubMedCrossRefGoogle Scholar
  19. Hou, C. T., 1975. Circular dichroism of holo- and apoprotocatechuate-3, 4-dioxygenase from Pseudomonas aeruginosa, Biochemistry 14: 3899–3902.Google Scholar
  20. Hou, C. T., 1978. Iron-binding ligands in the catalytic site of protocatechuate-3, 4-dioxy- genase, Bioinorg. Chem. 8: 237–243.PubMedCrossRefGoogle Scholar
  21. Hou, C. T., Lillard, M. O., and Schwartz, R. D., 1976. Protocatechuate-3, 4-dioxygenase from Acinetobacter calcoaceticus, Biochemistry 15: 582–588.Google Scholar
  22. Kaufman, S., and Fisher, D., 1970. Purification and some physical properties of phenylalanine hydroxylase from rat liver, J. Biol. Chem. 245: 4745–4750.PubMedGoogle Scholar
  23. Kaufman, S., and Fisher, D., 1974. Pterin-requiring aromatic amino acid hydroxylases, in Molecular Mechanisms of Oxygen Activation, O. Hayaishi (ed.), Academic Press, New York, pp. 285–369.Google Scholar
  24. Kelly, D. P., 1971. Autotrophy: Concepts of lithotrophic bacteria and their organic metabolism, Annu. Rev. Microbiol. 25: 177-210.PubMedCrossRefGoogle Scholar
  25. Keresztes-Nagy, S., Lazer, L., Klapper, M. H., and Klotz, I. M., 1965. Hybridization experiments: Evidence of dissociation equilibrium in hemerythrin, Science 150: 357–359.PubMedCrossRefGoogle Scholar
  26. Klotz, I. M., and Keresztes-Nagy, S., 1963. Hemerythrin: Molecular weight and dissociation into subunits, Biochemistry 2: 445–452.PubMedCrossRefGoogle Scholar
  27. Kuczenski, R., 1973. Rat brain tyrosine hydroxylase, J. Biol. Chem. 248: 2261–2265.PubMedGoogle Scholar
  28. Kuutti, E. R., Tuderman, L., and Kivirikko, K., 1975. Human prolyl hydroxylase. Purification, partial characterization, and preparation of antiserium to the enzyme, Eur. J. Biochem. 57: 181–188.PubMedCrossRefGoogle Scholar
  29. Lindblad, B., Lindstedt, G., Lindstedt, S., and Rundgren, M., 1977. Purification and some properties of human 4-hydroxyphenylpyruvate dioxygenase(I), J. Biol. Chem. 252: 5073–5084.PubMedGoogle Scholar
  30. Lindstedt, S., Odelhog, B., and Rundgren, M., 1977. Purification and some properties of 4-hydroxyphenylpyruvate dioxygenase from Pseudomonas sp. P. J. 874, Biochemistry 16: 3369–3377.Google Scholar
  31. Lipscomb, J., Howard, J., Lorsbach, T., and Wood, J., 1976. Protocatechuate-3, 4-dioxy- genase (PCA se): Subunit structure, Fed. Proc. Fed. Am. Soc. Exp. Biol. 35: 1536.Google Scholar
  32. Llinas, M., 1973. IV. Hemerythrin, Struct. Bonding (Berlin) 17: 169–176.Google Scholar
  33. Loehr, J. S., Lammers, P. J., Brimhall, B., and Hermodson, M. A., 1978. Amino acid sequence of hemerythrin from Themiste dyscritum, J. Biol. Chem. 253: 5726–5731.PubMedGoogle Scholar
  34. Lundgren, D. G., Vestal, J. R., and Tabita, F. R., 1974. The iron oxidizing bacteria, in Microbial Iron Metabolism, J. B. Neilands (ed.), Academic Press, New York, pp. 457–473.Google Scholar
  35. Mackler, B., Person, R., Miller, L. R., and Finch, C. A., 1979. Iron deficiency in the rat: Effects on phenylalanine metabolism, Pediatr. Res. 13: 1010–1011.PubMedCrossRefGoogle Scholar
  36. Mecham, D. K., and Olcott, H. S., 1949. Phosvitin, the principal phosphoprotein of egg yolk, J. Am. Chem. Soc. 71: 3670–3679.CrossRefGoogle Scholar
  37. Moss, T. H., Moleski, C., and York, J. L., 1971. Magnetic susceptibility evidence for a binuclear iron complex in hemerythrin, Biochemistry 10: 840–842.PubMedCrossRefGoogle Scholar
  38. Myllyla, R., Tuderman, L., and Kivirikko, K. I., 1977. Mechanism of the prolyl hydroxylase reaction. 2. Kinetic analysis of the reaction sequence, Eur. J. Biochem. 80: 349–357.PubMedCrossRefGoogle Scholar
  39. Myllyla, R., Kuutti-Savolainen, E.-R., and Kivirikko, K. I., 1978. The role of ascorbate in the prolyl hydroxylase reaction, Biochem. Biophys. Res. Commun. 83: 441–448.PubMedCrossRefGoogle Scholar
  40. Nozaki, M., 1974. Non-heme iron dioxygenases, in Molecular Mechanisms of Oxygen Activation, O. Hayaishi (ed.), Academic Press, New York, pp. 135–165.Google Scholar
  41. Osaki, S., Sexton, R. C., Pascual, E., and Frieden, E., 1975. Iron oxidation and transferrin formation by phosvitin, Biochem. J. 151: 519–525.PubMedGoogle Scholar
  42. Patel, R. N., Hou, C.-T., Felix, A., and Lillard, M. O., 1976. Catechol 1, 2-dioxygenase from Acinetobacter calcoaceticus: Purification and properties, J. Bacteriol. 127: 536–544.PubMedGoogle Scholar
  43. Perlmann, G. E., and Grizzuti, K., 1971. Conformational transition of the phosphoprotein phosvitin. Random conformation→β-structure, Biochemistry 10: 258–264.PubMedCrossRefGoogle Scholar
  44. Petrack, B., Sheppy, F., and Fetzer, V., 1968. Studies on tyrosine hydroxylase from bovine adrenal medulla, J. Biol. Chem. 243: 743–748.PubMedGoogle Scholar
  45. Petrack, B., Sheppy, F., Fetzer, V., Manning, T., Chertock, H., and Ma, D., 1972. Effect of ferrous iron on tyrosine hydroxylase of bovine adrenal medulla, J. Biol. Chem. 247: 4872–4878.PubMedGoogle Scholar
  46. Phillips, J. L., and Azari, P., 1974. Zinc transferrin. Enhancement of nucleic acid synthesis in phytohemagglutinin-stimulated human lymphocytes, Cell. Immunol. 10: 31–37.PubMedCrossRefGoogle Scholar
  47. Phillips, J. L., and Azari, P., 1975. Effect of iron transferrin on nucleic acid synthesis in phytohemagglutinin-stimulated human lymphocytes, Cell. Immunol. 15: 94–99.PubMedCrossRefGoogle Scholar
  48. Pistorius, E. K., and Axelrod, B., 1974. Iron, an essential component of lipoxygenase, J. Biol. Chem. 249: 3183–3186.PubMedGoogle Scholar
  49. Planas, J., and Frieden, E., 1973. Serum iron and ferroxidase activity in normal, copper deficient, and estrogenized roosters, Am. J. Physiol. 225: 423–430.PubMedGoogle Scholar
  50. Pringsheim, E. G., 1949. Iron bacteria, Biol. Rev. 24: 200–245.PubMedCrossRefGoogle Scholar
  51. Que, L., Lipscomb, J. D., Zimmermann, R., Miinck, E., Orme-Johnson, N. R., and Orme- Johnson, W. H., 1976. Mossbauer and EPR spectroscopy on protocatechuate 3, 4-diox- ygenase from Pseudomonas aeruginosa, Biochim. Biophys. Acta 452: 320–334.PubMedGoogle Scholar
  52. Que, L., Lipscomb, J. D., Miinck, E., and Woo, J. M., 1977. Protocatechuate 3, 4-dioxy- genase. Inhibitor studies and mechanistic implications, Biochim. Biophys. Acta 485: 60–74.PubMedGoogle Scholar
  53. Rundgren, M., 1977. Steady state kinetics of 4-hydroxyphenylpyruvate dioxygenase from human liver ( III ), J. Biol. Chem. 252: 5094–5099.Google Scholar
  54. Shainkin, R., and Perlmann, G. E., 1971a. Phosvitin, a phosphoglycoprotein. I. Isolation and characterization of a glycopeptide from phosvitin, J. Biol. Chem. 246: 2278–2284.PubMedGoogle Scholar
  55. Shainkin, R., and Perlmann, G. E., 1971b. Phosvitin, a phosphoglycoprotein: Composition and partial structure of carbohydrate moiety, Arch. Biochem. Biophys. 145: 693–700.PubMedCrossRefGoogle Scholar
  56. Silverman, M. P., and Ehrlich, H. L., 1964. Microbial formation and degradation of minerals, Adv. Appl. Microbiol. 6: 153–206.CrossRefGoogle Scholar
  57. Stenkamp, R. E., Sieker, L. C., and Jensen, L. H., 1976. Structure of the iron complex in methemerythrin, Proc. Natl. Acad. Sci. U.S.A. 73: 349–351.PubMedCrossRefGoogle Scholar
  58. Stenkamp, R. E., Sieker, L. C., Jensen, L. H., and McQueen, J. E., 1978. Structure of methemerythrin at 2.8 A resolution: Computer graphics fit of an averaged electron density map, Biochemistry 17. 2499–2504.PubMedCrossRefGoogle Scholar
  59. Suzuki, L., 1974. Mechanisms of inorganic oxidation and energy coupling, Annu. Rev. Microbiol. 28: 85–101.PubMedCrossRefGoogle Scholar
  60. Taborsky, G., 1963. Interaction between phosvitin and iron and its effect on a rearrangement of phosvitin structure, Biochemistry 2: 266–270.PubMedCrossRefGoogle Scholar
  61. Taborsky, G., 1974. Phosphoproteins, Adv. Protein. Chem. 29: 1–210.CrossRefGoogle Scholar
  62. Tormey, D. C., and Mueller, G. C., 1972. Biological effects of transferrin on human lymphocytes in vitro, Exp. Cell Res. 74: 220–226.PubMedCrossRefGoogle Scholar
  63. Tormey, D. C., Imrie, R. C., and Mueller, G. C., 1972. Identification of transferrin as a lymphocyte growth promoter in human serum, Exp. Cell Res. 74: 163–169.PubMedCrossRefGoogle Scholar
  64. Tuderman, L., Myllyla, R., and Kivirikko, K. I., 1977. Mechanism of the prolyl hydroxylase reaction. I. Role of co-substrates, Eur. J. Biochem. 80: 341–348.PubMedCrossRefGoogle Scholar
  65. Webb, J. H., Multani, J. S., Saltman, P., Beach, N. A., and Gray, H. B., 1973. Spectroscopic and magnetic studies of iron(III) phosvitins, Biochemistry 12: 1797–1802.PubMedCrossRefGoogle Scholar
  66. York, J. L., and Bearden, A. J., 1970. Active site of hemerythrin. Iron electronic states and the binding of oxygen, Biochemistry 9: 4549–4554.PubMedCrossRefGoogle Scholar
  67. York, J. L., and Roberts, M. P., 1976. The iron and subunit binding sites of hemerythrin. The role of histidine, tyrosine, and tryptophan, Biochim. Biophys. Acta 420: 265–278.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Anatoly Bezkorovainy
    • 1
  1. 1.Rush-Presbyterian-St. Luke’s Medical CenterChicagoUSA

Personalised recommendations