Chemistry and Biology of Iron Storage

  • Anatoly Bezkorovainy
Part of the Biochemistry of the Elements book series (BOTE, volume 1)


It is said that nearly 20% of all iron in the human organism is associated with the protein ferritin and hemosiderin, which represent the storage forms of iron. Ferritin, but not hemosiderin, is water soluble. For this reason, ferritin has been rather thoroughly characterized, whereas little information is as yet available on the properties of hemosiderin. The latter can be visualized both via the light and electron microscopes and appears in the form of granular structures. Such granules react with Perls’ solution [K4Fe(CN)6] to give the Prussian blue color. Ferritin also reacts with Perls’ solution; however, under the light microscope, ferritin appears as a diffuse blue coloration. Ferritin particles can be discerned via the electron microscope. Ferritin is present in the cytosol and the lysosomes and to a much lesser extent in other subcellular structures. All available evidence indicates that insofar as the liver is concerned, hemosiderin is normally located almost exclusively in the Kupffer cells, whereas ferritin is present largely in the parenchymal cells. Both hemosiderin and ferritin are also present in other tissues of the mammalian organism (Arora et al., 1970), and ferritin is found in both vertebrate and invertebrate animals as well as in some plants and even in microorganisms (Richter, 1978).


Serum Ferritin Iron Overload Iron Uptake Iron Metabolism Iron Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ances, I. G., Granados, J., and Baltazar, M., 1979. Serum ferritin as an early determinant of decreased iron stores in pregnant women, South. Med. J. 72: 591–592.PubMedCrossRefGoogle Scholar
  2. Arora, R. S., Lynch, E. C., Whitley, C. E., and Alfrey, C. P., 1970. The ubiquity and significance of human ferritin, Tex. Rep. Biol. Med. 28: 189–196.PubMedGoogle Scholar
  3. Arosio, P., Adelman, T. G., and Drysdale, J. W., 1978. On ferritin heterogeneity. Further evidence for heteropolymers, J. Biol. Chem. 253: 4451–4458.PubMedGoogle Scholar
  4. Baker, E., Vicary, F. R., and Huehns, E. R., 1977. Iron mobilisation from isolated rat hepatocytes, in Proteins of Iron Metabolism, E. B. Brown, P. Aisen, J. Fielding, and R. R. Crichton (eds.), Grune and Stratton, New York, pp. 327–334.Google Scholar
  5. Bankowsky, H. L., Carpenter, S. J., and Healey, J. F., 1979. Iron and the liver, Arch. Pathol. Lab. Med. 103: 21–29.Google Scholar
  6. Banyard, S. H., Stammers, D. K., and Harrison, P. M., 1978. Electron density map of apoferritin at 2.8 Â resolution, Nature (London) 271: 282–284.CrossRefGoogle Scholar
  7. Barry, M., 1974. Progress report: Iron and the liver, Gut 15: 324–334.Google Scholar
  8. Batey, R. G., Pettit, J. E., Nicholas, A. W., Sherlock, S., and Hoffbrand, A. V., 1978. Hepatic iron clearance from serum in treated hemochromatosis, Gastroenterology 75: 856–859.PubMedGoogle Scholar
  9. Beamish, M. R., Keay, L., Okigaki, T., and Brown, E. B., 1975. Uptake of transferrin-bound iron by rat cells in tissue culture, Br. J. Haematol. 31: 479–491.PubMedCrossRefGoogle Scholar
  10. Bertrand, M. L., and Harris, D. C., 1979. Insensitivity of the ferritin iron core to heat treatment, Experientia 35: 300.PubMedCrossRefGoogle Scholar
  11. Bezwoda, W. R., Bothwell, T. H., Torrance, J. D., MacPhail, A. P., Charlton, R. W., Kay, G., and Levin, J., 1979. The relationship between marrow iron stores, plasma ferritin concentrations, and iron absorption, Scand. J. Haematol. 22: 113–120.PubMedCrossRefGoogle Scholar
  12. Bjork, I., and Fish, W. W., 1971. Native and subunit molecular weights of apoferritin, Biochemistry 10: 2844–2848.PubMedCrossRefGoogle Scholar
  13. Bomford, A., Berger, M., Lis, Y., and Williams, R., 1978. The iron content of human liver and spleen isoferritins correlates with their isoelectric point and subunit composition, Biochem. Biophys. Res. Commun. 83: 334–341.PubMedCrossRefGoogle Scholar
  14. Bryce, C. F. A., and Crichton, R. R., 1971. The subunit structure of horse spleen apoferritin. I. The molecular weight of the subunit, J. Biol. Chem. 246: 4198–4205.Google Scholar
  15. Bryce, C. F. A., Magnusson, C. G. M., and Crichton, R. R., 1978. A reappraisal of the electrophoretic patterns obtained from ferritin and apoferritin in the presence of dénaturants, FEBS Lett. 96: 257–262.PubMedCrossRefGoogle Scholar
  16. Charlton, R. W., Jacobs, P., Torrance, J. D., and Bothwell, T. H., 1965. The role of the intestinal mucosa in iron absorption, J. Clin. Invest. 44: 543–555.PubMedCrossRefGoogle Scholar
  17. Charlton, R. W., Bothwell, T. H., and Seftel, H., 1973. Dietary iron overload, Clin. Haematol. 2: 383–403.Google Scholar
  18. Christensen, A. C., Huebers, H., and Finch, C. A., 1978. Effect of transferrin saturation on iron delivery in rats, Am. J. Physiol. 235: R18–R22.Google Scholar
  19. Collet-Cassart, D., and Crichton, R. R., 1975. Structural studies on horse spleen apoferritin, in Proteins of Iron Storage and Transport in Biochemistry and Medicine, R. R. Crichton (ed.), North-Holland, Amsterdam, pp. 185–192.Google Scholar
  20. Cox, T. M., and Peters, T. J., 1979. The kinetics of iron uptake in vitro by human duodenal mucosa: Studies in normal subjects, J. Physiol. 289: 469–478.Google Scholar
  21. Cox, T. M., Mazurier, J., Spik, G., Montreuil, J., and Peters, T. J., 1979. Iron binding proteins and influx of iron across the duodenal brush border: Evidence for specific lactotransferrin receptors in the human intestine, Biochim. Biophys. Acta 588: 120–128.PubMedCrossRefGoogle Scholar
  22. Crichton, R. R., 1972. The subunit structure of apoferritin and other eicosamers, Biochem. J. 126: 761–764.PubMedGoogle Scholar
  23. Crichton, R. R., 1973a. The biochemistry of ferritin, Br. J. Haematol. 24: 677–680.PubMedCrossRefGoogle Scholar
  24. Crichton, R. R., 1973b. Ferritin, Struct. Bonding (Berlin) 17: 67–134.Google Scholar
  25. Crichton, R. R., 1973c. Structure and function of ferritin, Angew. Chem. Int. Ed. Engl. 12: 57–65.Google Scholar
  26. Crichton, R. R., 1973d. A role for ferritin in the regulation of iron metabolism, FEBS Lett. 34: 125–128.PubMedCrossRefGoogle Scholar
  27. Crichton, R. R., and Bryce, C. F. A., 1970. Molecular weight estimation of apoferritin subunits, FEBS Lett. 6: 121–124.PubMedCrossRefGoogle Scholar
  28. Crichton, R. R., Eason, R., Barclay, A., and Bryce, C. F. A., 1973a. The subunit structure of horse spleen apoferritin: The molecular weight of the oligomer and its stability to dissociation by dilution, Biochem. J. 131: 855–857.PubMedGoogle Scholar
  29. Crichton, R. R., Millar, J. A., Cumming, R. L. C., and Bryce, C. F. A., 1973b. The organ specificity of ferritin in human and horse liver and spleen, Biochem. J. 131: 51–59.PubMedGoogle Scholar
  30. Crichton, R. R., Huebers, H., Huebers, E., Collet-Cassart, D., and Ponce, Y., 1975. Comparative studies on ferritin, in Proteins of Iron Storage and Transport in Biochemistry and Medicine, R. R. Crichton (ed.), North-Holland, Amsterdam, pp. 193–200.Google Scholar
  31. Crichton, R. R., Collet-Cassart, D., Ponce-Ortiz, Y., Wauters, M., Roman, F., and Paques, E., 1977. Ferritin: Comparative structural studies, iron deposition, and mobilization, in Proteins of Iron Metabolism, E. B. Brown, P. Aisen, J. Fielding, and R. R. Crichton (eds.), Grune and Stratton, New York, pp. 13–22.Google Scholar
  32. Crichton, R. R., Ponce-Ortiz, Y., Koch, M. H. J., Parfait, R., and Stuhrmann, H. B., 1978. Isolation and characterization of phytoferritin from pea (Pisum sativum) and lentil ( Lens esculenta ), Biochem. J. 171: 349–356.PubMedGoogle Scholar
  33. Crichton, R. R., Heusterspreute, M., Collet-Cassart, D., Wustefeld, C., Ponce-Ortiz, Y., Magnusson, C. G., and Schank, K., 1979. “The primary structure of apoferritins from plant and animal origins,” Abstract E, Fourth International Conference on Proteins of Iron Metabolism, Davos, Switzerland, April 17–21, 1979.Google Scholar
  34. Crosby, W. H., 1963. The control of iron balance by the intestinal mucosa, Blood 22, 441–449.PubMedGoogle Scholar
  35. Crosby, W. H., 1977. Normal serum ferritin in precirrhotic hemochromatosis, N. Engl. J. Med. 296: 1116.Google Scholar
  36. Crosby, W. H., Conrad, M. E., and Wheby, M. S., 1963. The rate of iron accumulation in iron storage disease, Blood 22: 429–440.PubMedGoogle Scholar
  37. Cumming, R. L. C., 1978. Disorders of iron metabolism, Practitioner 221: 184–192.Google Scholar
  38. Cynkin, M. A., and Knowlton, M., 1977. Studies on the carbohydrate components of ferritin, in Proteins of Iron Metabolism, E. B. Brown, P. Aisen, J. Fielding, and R. R. Crichton (eds.), Grune and Stratton, New York, pp. 115–120.Google Scholar
  39. Dognin, J., and Crichton, R. R., 1975. Mobilisation of iron from ferritin fractions of defined iron content by biological reductants, FEBS Lett. 54: 234–236.PubMedCrossRefGoogle Scholar
  40. Drysdale, J. W., 1977. Ferritin phenotypes: Structure and metabolism, in Ciba Foundation Symposium 51, Iron Metabolism, Elsevier-North-Holland, Amsterdam, pp. 41–67.Google Scholar
  41. Drysdale, J. W., and Munro, H. N., 1965. Small scale isolation of ferritin for the assay of the incorporation of,4C-labelled amino acids, Biochem. J. 95: 851–858.PubMedGoogle Scholar
  42. Drysdale, J. W., and Munro, H. N., 1966. Regulation of synthesis and turnover of ferritin in rat liver, J. Biol. Chem. 241: 3630–3637.PubMedGoogle Scholar
  43. Drysdale, J. W., Adelman, T. G., Arosio, P., Casareale, D., Fitzpatrick, P., Hazard, J. T., and Yokota, M., 1977. Human isoferritins in normal and disease states, Semin. Hematol. 14: 71–88.Google Scholar
  44. Engel, R. H., and Pribor, H. C., 1978. Serum ferritin: A convenient measure of body iron stores, Lab. Manage. Oct.: 31–34.Google Scholar
  45. Fagard, R., Tan, H. V., and Saddi, R., 1978. Control of ferritin biosynthesis: Are ribosomes the target of iron? Biochimie 60: 517–520.PubMedCrossRefGoogle Scholar
  46. Fillet, G., Marsaglia, G., and Finch, C. A., 1975. Idiopathic hemochromatosis. Abnormality in RBC transport of iron by the reticuloendothelial system ( RES ), Blood 46: 1007.Google Scholar
  47. Fine, J. M., and Harris, G., 1963. Electrophoretic and immunological studies of horse and human ferritin, Clin. Chim. Acta 8: 794–798.Google Scholar
  48. Fineberg, R. A., and Greenberg, D. M., 1955a. Ferritin biosynthesis. II. Acceleration of synthesis by the administration of iron. J. Biol. Chem. 214: 97–106.PubMedGoogle Scholar
  49. Fineberg, R. A., and Greenberg, D. M., 1955b. Ferritin biosynthesis. Apoferritin, the initial product, J. Biol. Chem. 214: 107–113.PubMedGoogle Scholar
  50. Fischbach, F. A., Gregory, D. W., Harrison, P. M., Hoy, T. G., and Williams, J. M., 1971. On the structure of hemosiderin and its relationship to ferritin, J. Ultrastruct. Res. 37: 495–503.PubMedCrossRefGoogle Scholar
  51. Fletcher, J., 1971. The plasma clearance and liver uptake of iron from transferrin of low and high iron saturation, Clin. Sci. 41: 395–402.Google Scholar
  52. Frieden, F., 1973. The ferrous to ferric cycles in iron metabolism, Nutr. Rev. 31: 41–44.Google Scholar
  53. Frieden, E., and Hsieh, H. S., 1976. Ceruloplasmin: The copper transport protein with essential oxidase activity, Adv. Enzymol. Relat. Areas Mol. Biol. 44: 187–236.Google Scholar
  54. Giorgio, A. J., 1973. Primary hemochromatosis: Easily missed cause of cirrhosis, diabetes, and heart failure, Geriatrics 28: 131–134.PubMedGoogle Scholar
  55. Granick, S., 1946a. Ferritin: Its properties and significance for iron metabolism, Chem. Rev. 38: 379–403.Google Scholar
  56. Granick, S., 1946b. Protein apoferritin and ferritin in iron feeding and absorption, Science 103: 107.CrossRefGoogle Scholar
  57. Granick, S., 1951. Structure and physiological functions of ferritin, Physiol. Rev. 31: 489–511.Google Scholar
  58. Grohlich, D., Morley, C. G. D., Miller, R. J., and Bezkorovainy, A., 1977. Iron incorporation into isolated rat hepatocytes, Biochem. Biophys. Res. Commun. 76: 82–692.Google Scholar
  59. Grohlich, D., Morley, C. G. D., and Bezkorovainy, A., 1979. Some aspects of iron uptake by rat hepatocytes in suspension, Int. J. Biochem. 10: 797–802.PubMedCrossRefGoogle Scholar
  60. Halliday, J. W., Mack, U., and Powell, L. W., 1979. The kinetics of serum and tissue ferritins: Relation to carbohydrate content, Br. J. Haematol. 42: 535–546.PubMedCrossRefGoogle Scholar
  61. Harris, D. C., 1978. Iron exchange between ferritin and transferrin in vitro, Biochemistry 17: 3071–3078.PubMedCrossRefGoogle Scholar
  62. Harrison, P. M., 1963. The structure of apoferritin: Molecular size, shape, and symmetry from X-ray data, J. Mol. Biol. 6: 404–422.PubMedCrossRefGoogle Scholar
  63. Harrison, P. M., 1977. Ferritin: An iron-storage molecule, Semin. Hematol. 14: 55–70.PubMedGoogle Scholar
  64. Harrison, P. M., and Gregory, D. W., 1968. Reassembly of apoferritin molecules from subunits, Nature (London) 220: 578–580.CrossRefGoogle Scholar
  65. Harrison, P. M., Fischbach, F. A., Hoy, T. G., and Haggis, G. H., 1967. Ferric oxyhydroxide core of ferritin, Nature (London) 216: 1188–1190.CrossRefGoogle Scholar
  66. Harrison, P. M., Hoy, T. G., Macara, I. G., and Hoare, R. J., 1974. Ferritin iron uptake and release. Structure-function relationships, Biochem. J. 143: 445–451.PubMedGoogle Scholar
  67. Harrison, P. M., Hoy, T. G., and Hoare, R. J., 1975. Towards a mechanism of iron uptake and release by ferritin molecules, in Proteins of Iron Storage and Transport in Biochemistry and Medicine, R. R. Crichton (ed.), North-Holland, Amsterdam, pp. 271–278.Google Scholar
  68. Harrison, P. M., Banyard, S. H., and Stammers, D. K., 1979. “The structure of horse spleen apoferritin and its implications,” Abstract D, Fourth International Conference on Proteins of Iron Metabolism, Davos, Switzerland, April 17–21, 1979.Google Scholar
  69. Hauser, H., 1969. Fractionation of horse spleen ferritin. Relationship of Fe/N-ratio to some physio-chemical properties, Hoppe-Seyler’s Z. Physiol. Chem. 350: 1331–1339.Google Scholar
  70. Hazard, J. T., and Drysdale, J. W., 1977. Ferritinaemia in cancer, Nature (London) 265: 755–756.CrossRefGoogle Scholar
  71. Hazard, J. T., Yokota, M., Arosio, P., and Drysdale, J. W., 1977. Immunologic differences in human isoferritins: Implications for immunologic quantitation of serum ferritin, Blood 49: 139–146.PubMedGoogle Scholar
  72. Hegenauer, J., Ripley, L., and Saltman, P., 1977. Regulation of iron absorption by control of heme biosynthesis in the intestinal mucosa, in Proteins of Iron Metabolism, E. B. Brown, P. Aisen, J. Fielding, and R. R. Crichton (eds.), Grune and Stratton, New York, pp. 403–410.Google Scholar
  73. Hegenauer, J., Saltman, P., and Hatlen, L., 1979. Removal of cadmium ( II) from crystallized ferritin, Biochem. J. 177: 693–695.Google Scholar
  74. Hershko, C., 1977. Storage iron regulation, Prog. Hematol. 10: 105–148.Google Scholar
  75. Hershko, C., and Rachmilewitz, E. A., 1975. Non-transferrin plasma iron in patients with transfusional iron overload, in Proteins of Iron Storage and Transport in Biochemistry and Medicine, R. R. Crichton (ed.), North-Holland, Amsterdam, pp. 427–432.Google Scholar
  76. Hoare, R. J., Harrison, P. M., and Hoy, T. G., 1975. Structure of horse-spleen apoferritin at 6 A resolution, Nature (London) 255: 653–654.CrossRefGoogle Scholar
  77. Hofmann, T., and Harrison, P. M., 1963. The structure of apoferritin: Degradation into and molecular weight of subunits, J. Mol. Biol. 6: 256–267.PubMedCrossRefGoogle Scholar
  78. Hoy, T. G., and Harrison, P. M., 1976. The uptake of ferric iron by rat liver ferritin in vivo and in vitro, Br. J. Haematol. 33: 497–504.Google Scholar
  79. Hoy, T. G., Harrison, P. M., Shabbir, M., and Macara, I. G., 1974a. The release of iron from horse spleen ferritin to 1, 10-phenanthroline, Biochem. J. 137: 67–70.PubMedGoogle Scholar
  80. Hoy, T. G., Harrison, P. M., and Shabbir, M., 1974b. Uptake and release of ferritin iron. Surface effects and exchange within crystalline core, Biochem. J. 139: 603–607.Google Scholar
  81. Huberman, A., and Barahona, E., 1978. Primary structure of rat liver apoferritin. The amino end. Biochim. Biophys. Acta 533: 51–56.PubMedGoogle Scholar
  82. Jacobs, A., and Worwood, M., 1975a. The biochemistry of ferritin and its clinical implications, Prog. Hematol. 9: 1–24.PubMedGoogle Scholar
  83. Jacobs, A., and Worwood, M., 1975b. Ferritin in serum: Clinical and biochemical implications, N. Engl. J. Med. 292: 951–956.PubMedCrossRefGoogle Scholar
  84. Jones, T., Spencer, R., and Walsh, C., 1978. Mechanism and kinetics of iron release from ferritin by dihydroflavins and dihydroflavin analogues, Biochemistry 17: 4012–4017.Google Scholar
  85. Lavoie, D. J., Marcus, D. M., Ishikawa, K., and Listowsky, I., 1977. Ferritin and apoferritin from human liver: Aspects of heterogeneity, in Proteins of Iron Metabolism, E. B. Brown, P. Aisen, J. Fielding, and R. R. Crichton (eds.), Grune and Stratton, New York, pp. 71–78.Google Scholar
  86. Lavoie, D. J., Ishikawa, K., and Listowsky, I., 1978. Correlations between subunit distribution, microheterogeneity, and iron content of human liver ferritin, Biochemistry 17: 5448–5454.PubMedCrossRefGoogle Scholar
  87. Lee, S. S. C., and Richter, G. W., 1977a. Biosynthesis of ferritin in rat livers. I. Synthesis and assembly of protein subunits of ferritin, J. Biol. Chem. 252: 2046–2053.PubMedGoogle Scholar
  88. Lee, S. S. C., and Richter, G. W., 1977b. Biosynthesis of ferritin in rat hepatoma cells and rat livers. II. Binding of iron by ferritin protein, J. Biol. Chem. 252: 2054–2059.PubMedGoogle Scholar
  89. Lee, J. C. K., Lee, S. S. C., Schlesinger, K. J., and Richter, G. W., 1975. Production of ferritin by rat hepatoma cells in vitro: Demonstration of protein subunits and ferritin by immunofluorescence, Am. J. Pathol. 80: 235–243.PubMedGoogle Scholar
  90. Levine, P. H., Levine, A. J., and Weintraub, L. R., 1972. The role of transferrin in the control of iron absorption: Studies on a cellular level, J. Lab. Clin. Med. 80: 333–341.PubMedGoogle Scholar
  91. Linder-Horowitz, M., Ruettinger, R. T., and Munro, H. N., 1970. Iron induction of electrophoretically different ferritins in rat liver, heart, and kidney, Biochim. Biophys. Acta 200: 442–448.PubMedGoogle Scholar
  92. Lipschitz, D. A., Bothwell, T. H., Seftel, H. C., Wapnick, A. A., and Charlton, R. W., 1971. The role of ascorbic acid in the metabolism of storage iron, Br. J. Haemalol. 20: 155–163.CrossRefGoogle Scholar
  93. Listowsky, I., Blauer, G., Englard, S., and Betheil, J. J., 1972. Denaturation of horse spleen ferritin in aqueous guanidinium chloride solutions, Biochemistry 11: 2176–2182.PubMedCrossRefGoogle Scholar
  94. Loria, A., Hershko, C., and Konijn, A., 1979. Serum ferritin in an elderly population, J. Gerontol. 34: 521–524.PubMedGoogle Scholar
  95. Macara, I. G., Hoy, T. G., and Harrison, P. M., 1972. The formation of ferritin from apoferritin. Kinetics and mechanism of iron uptake, Biochem. J. 126: 151–162.PubMedGoogle Scholar
  96. Macara, I. G., Hoy, T. G., and Harrison, P. M., 1973. The formation of ferritin from apoferritin. Inhibition and metal ion-binding studies, Biochem. J. 135: 785–789.PubMedGoogle Scholar
  97. MacDonald, R. A., 1969. Human and experimental hemochromatosis and hemosiderosis, in Pigments in Pathology, M. Walman (ed.), Academic Press, New York, pp. 115–149.Google Scholar
  98. Mainwaring, W. I. P., and Hofmann, T., 1968. Horse spleen apoferritin: N-terminal and C- terminal residues, Arch. Biochem. Biophys. 125: 975–980.Google Scholar
  99. Manis, J., 1973. Ferrous iron oxidation by intestinal mucosa: Possible role in mucosal iron metabolism, Proc. Soc. Exp. Biol. Med. 144: 1025–1029.Google Scholar
  100. Marston, H. R., and Allen, S. H., 1967. Function of copper in the metabolism of iron, Nature (London) 215: 645–646.CrossRefGoogle Scholar
  101. Massover, W. H., 1978. The ultrastructure of ferritin macromolecules. III. Mineralized iron in ferritin is attached to the protein shell, J. Mol. Biol. 123: 721–726.Google Scholar
  102. May, M. E., and Fish, W. W., 1977. The isolation and properties of porcine ferritin and apoferritin, Arch. Biochem. Biophys. 182: 396–403.PubMedCrossRefGoogle Scholar
  103. Mazur, A., Baez, S., and Shorr, E., 1955. The mechanism of iron release from ferritin as related to its biological properties, J. Biol. Chem. 213: 147–160.Google Scholar
  104. Mazur, A., Green, S., and Carleton, A., 1960. Mechanism of plasma iron incorporation into hepatic ferritin, J. Biol. Chem. 235: 595–603.Google Scholar
  105. McKay, R. H., and Fineberg, R. A., 1964. Horse spleen hemosiderin, Arch. Biochem. Biophys. 104: 496–508.PubMedCrossRefGoogle Scholar
  106. Milsom, J. P., and Batey, R. G., 1979. The mechanism of hepatic iron uptake from native and denatured transferrin and its subcellular metabolism in the liver cell, Biochem. J. 182: 117–125.PubMedGoogle Scholar
  107. Munro, H. N., and Linder, M. C., 1978. Ferritin: Structure, biosynthesis, and role in iron metabolism, Physiol. Rev. 58: 317–396.PubMedGoogle Scholar
  108. Niitsu, Y., and Listowsky, I., 1973a. The distribution of iron in ferritin, Arch. Biochem. Biophys. 158: 276–281.PubMedCrossRefGoogle Scholar
  109. Niitsu, Y., and Listowsky, I., 1973b. Mechanisms for the formation of ferritin oligomers, Biochemistry 12: 4690–4695.PubMedCrossRefGoogle Scholar
  110. Niitsu, Y., Ishitani, K., and Listowsky, I., 1973. Subunit heterogeneity in ferritin, Biochem. Biophys. Res. Commun. 55: 1134–1140.PubMedCrossRefGoogle Scholar
  111. Osaki, S., and Johnson, D. A., 1969. Mobilization of liver iron by ferroxidase (ceruloplasmin), J. Biol. Chem. 244: 5757–5758.PubMedGoogle Scholar
  112. Osaki, S., Johnson, D. A., and Frieden, E., 1971. The mobilization of iron from the perfused mammalian liver by a serum copper enzyme, ferroxidase I, J. Biol. Chem. 246: 3018–3023.Google Scholar
  113. Pape, L., Multani, J. S., Stitt, C., and Saltman, P., 1968a. In vivo reconstitution of ferritin, Biochemistryl: 606–612.Google Scholar
  114. Pape, L., Multani, J. S., Stitt, C., and Saltman, P., 1968b. The mobilization of iron from ferritin by chelating agents, Biochemistry 7: 613–616.PubMedCrossRefGoogle Scholar
  115. Planas, J., and Frieden, E., 1973. Serum iron and ferroxidase activity in normal, copper deficient, and estrogenized roosters, Am. J. Physiol. 225: 423–428.Google Scholar
  116. Pollack, S., and Lasky, F. D., 1977. A new iron binding protein with wide tissue distribution, in Proteins of Iron Metabolism, E. B. Brown, P. Aisen, J. Fielding, and R. R. Crichton (eds.), Grune and Stratton, New York, pp. 393–396.Google Scholar
  117. Pollycove, M., 1978. Hemochromatosis, in The Metabolic Basis of Inherited Disease, 4th ed., J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson (eds.), McGraw-Hill, New York, pp. 1127–1164.Google Scholar
  118. Pootrakul, P., Christensen, A., Josephson, B., and Finch, C. A., 1977. Role of transferrin in determining internal iron distribution, Blood 49: 957–966.PubMedGoogle Scholar
  119. Powell, L. W., and Halliday, J. W., 1978. The detection of early hemochromatosis, Am. J. Dig. Dis. 23: 377–379.PubMedCrossRefGoogle Scholar
  120. Powell, L. W., Alpert, E., Isselbacher, K. J., and Drysdale, J. W., 1975a. Humanisoferritins: Organ specific iron and apoferritin distribution, Br. J. Haematol. 30: 47–55.PubMedCrossRefGoogle Scholar
  121. Powell, L. W., McKeering, L., and Halliday, J. W., 1975b. Microheterogeneity of tissue ferritins in iron storage disease, in Proteins of Iron Storage and Transport in Biochemistry and Medicine, R. R. Crichton (ed.), North-Holland, Amsterdam, pp. 367–370.Google Scholar
  122. Powell, L. W., Halliday, J. W., and Cowlishaw, J. L., 1978. Relationship between serum ferritin and total body iron stores in idiopathic hemochromatosis, Gut 19: 538–542.PubMedCrossRefGoogle Scholar
  123. Ragan, H. A., Nacht, S., Lee, G. R., Bishop, C. R., and Cartwright, G. E., 1969. Effect of ceruloplasmin on plasma iron in copper deficient swine, Am. J. Physiol. 217: 1320–1323.PubMedGoogle Scholar
  124. Richter, G. W., 1965. Comparison of ferritins from neoplastic and non-neoplastic human cells, Nature (London) 207: 616–617.CrossRefGoogle Scholar
  125. Richter, G. W., 1978. The iron-loaded cell-the cytopathology of iron storage, Am. J. Pathol. 91: 361–404.Google Scholar
  126. Richter, G. W., and Walker, G. F., 1967. Reversible association of apoferritin molecules. Comparison of light-scattering and other data, Biochemistry 6: 2871–2881.PubMedCrossRefGoogle Scholar
  127. Russell, S. M., and Harrison, P. M., 1978. Heterogeneity in horse ferritins. A comparative study of surface charge, iron content, and kinetics of iron uptake, Biochem. J. 175: 91–104.PubMedGoogle Scholar
  128. Saarinen, U. M., and Siimes, M. A., 1979. Iron absorption from breast milk, cow’s milk, and iron-supplemented formula: An opportunistic use of changes in total body iron determined by hemoglobin, ferritin, and body weight in 132 infants, Pediatr. Res. 13: 143–147.PubMedCrossRefGoogle Scholar
  129. Saltman, P., Fiskin, R. D., and Bellinger, S. B., 1956a. The metabolism of iron by rat liver slices. The effect of physical environment and iron concentration, J. Biol. Chem. 220: 741–750.PubMedGoogle Scholar
  130. Saltman, P., Fiskin, R. D., Bellinger, S. B., and Alex, T., 1956b. The metabolism of iron by rat liver slices. The effect of chemical agents, J. Biol. Chem. 220: 751–757.Google Scholar
  131. Samarel, A., and Bern, M. M., 1978. Distribution of iron in splenic ferritin, Lab. Invest. 39: 10–12.PubMedGoogle Scholar
  132. Savin, M. A., and Cook, J. D., 1978. Iron transport by isolated rat intestinal mucosal cells, Gastroenterology 75: 688–694.PubMedGoogle Scholar
  133. Shinjyo, S., Abe, H., and Masuda, M., 1975. Carbohydrate composition of horse spleen ferritin, Biochim. Biophys. Acta 411: 165–167.Google Scholar
  134. Siimes, M. A., Addiego, J. E., and Dallman, P. R., 1974. Ferritin in serum: Diagnosis of iron deficiency and iron overload in infants and children, Blood 43: 581–590.PubMedGoogle Scholar
  135. Sirivech, S., Frieden, E., and Osaki, S., 1974. The release of iron from horse spleen ferritin by reduced flavins, Biochem. J. 143: 311–315.Google Scholar
  136. Smith-Johannsen, H., and Drysdale, J. W., 1969. Reversible dissociation of ferritin and its subunits in vitro, Biochim. Biophys. Acta 194: 43–49.PubMedGoogle Scholar
  137. Sturgeon, P., and Shoden, A., 1969. Hemosiderin and ferritin, in Pigments in Pathology, M. Wolman (ed.), Academic Press, New York, pp. 93–114.Google Scholar
  138. Suran, A. A., 1966. N-terminal sequence of horse spleen apoferritin, Arch. Biochem. Biophys. 113: 1–4.PubMedCrossRefGoogle Scholar
  139. Taylor, M. R. H., and Gatenby, P. B. B., 1966. Iron absorption in relation to transferrin saturation and other factors, Br. J. Haematol. 12: 747–753.PubMedCrossRefGoogle Scholar
  140. Topham, R. W., 1978. Isolation of an intestinal promoter of Fe3+-transferrin formation, Biochem. Biophys. Res. Commun. 85: 1339–1345.PubMedCrossRefGoogle Scholar
  141. Torrance, J. D., Charlton, R. W., Simon, M. O., Lynch, S. R., and Bothwell, T. H., 1978. The mechanism of endotoxin–induced hypoferraemia, Scand. J. Haematol. 21: 403–410.PubMedCrossRefGoogle Scholar
  142. Treffry, A., and Harrison, P. M., 1978. Incorporation and release of inorganic phosphate in horse spleen ferritin, Biochem. J. 171: 313–320.Google Scholar
  143. Treffry, A., Sowerby, J. M., and Harrison, P. M., 1979. Oxidant specificity in ferritin formation, FEBS Lett. 100: 33–36.PubMedCrossRefGoogle Scholar
  144. Trump, B. F., and Berezesky, I. K., 1977. A general model of intracellular iron metabolism, in Proteins of Iron Metabolism, E. B. Brown, P. Aisen, J. Fielding, and R. R. Crichton (eds.), Grune and Stratton, New York, pp. 359–364.Google Scholar
  145. Valberg, L. S., Birkett, N., Haist, J., Zamecnik, J., and Pelletier, O., 1979. Evaluation of the body iron status of native Canadians, Can. Med. Assoc. J. 120: 285–290.PubMedGoogle Scholar
  146. Van Bockxmeer, F., Hemmaplardh, D., and Morgan, E. H., 1975. Studies on the binding of transferrin to cell membrane receptors, in Proteins of Iron Storage and Transport in Biochemistry and Medicine, R. R. Crichton (ed.), North-Holland, Amsterdam, pp. 111–119.Google Scholar
  147. Van Kreel, B. K., Van Eijk, H. G., and Leijnse, B., 1972. The isoelectric fractionation of rabbit ferritin, Acta Haematol. 47: 59–64.PubMedCrossRefGoogle Scholar
  148. van Wyk, C. P., Linder-Horowitz, M., and Munro, H. N., 1971. Effect of iron loading on non-heme iron compounds in different liver cell populations, J. Biol. Chem. 246: 1025–1031.PubMedGoogle Scholar
  149. Verhoef, N. J., Kottenhagen, M. J., Mulder, H. J. M., Noordeloos, P. J., and Leijnse, B., 1978. Functional heterogeneity of transferrin-bound iron, Acta Haematol. 60: 210–226.PubMedCrossRefGoogle Scholar
  150. Vulimiri, L., Catsimpoolas, N., Griffith, A. L., Under, M. C., and Munro, H. N., 1975. Size and charge heterogeneity of rat tissue ferritins, Biochim. Biophys. Acta 412: 148–156.PubMedGoogle Scholar
  151. Wagstaff, M., Worwood, M., and Jacobs, A., 1978. Properties of human tissue isoferritins, Biochem. J. 173: 969–977.Google Scholar
  152. Wetz, K., and Crichton, R. R., 1976. Chemical modification as a probe of the topography and reactivity of horse-spleen apoferritin, Eur. J. Biochem. 61: 545–550.PubMedCrossRefGoogle Scholar
  153. White, G. P., and Jacobs, A., 1978. Iron uptake by Chang cells from transferrin, nitriloacetate, and citrate complexes, Biochim. Biophys. Acta 543: 217–225.Google Scholar
  154. Wood, G. C., and Crichton, R. R., 1971. Optical rotatory dispersion and circular dichroism studies on ferritin and apoferritin, Biochim. Biophys. Acta 229: 83–87.PubMedGoogle Scholar
  155. Wyllie, J. C., 1977. Transferrin uptake by rabbit alveolar macrophages in vitro, Br. J. Haematol. 37: 17–24.PubMedGoogle Scholar
  156. Yoshino, Y., Yamakawa, S., and Hirai, Y., 1977. Iron binding compounds in particulate fraction of intestinal mucosa, in Proteins of Iron Metabolism, E. B. Brown, P. Aisen, J. Fielding, and R. R. Crichton (eds.), Grune and Stratton, New York, pp. 397–402.Google Scholar
  157. Zahringer, J., Baliga, B. S., and Munro, H. N., 1976. Novel mechanism for translational control in regulation of ferritin synthesis by iron, Proc. Natl. Acad. Sci. U.S.A. 73: 857–861.PubMedCrossRefGoogle Scholar
  158. Zamiri, I., and Mason, J., 1968. Electrophoresis of ferritins, Nature (London) 217: 258–259.CrossRefGoogle Scholar
  159. Zimelman, A. P., Zimmerman, H. J., McLean, R., and Weintraub, L. R., 1977. Effect of iron saturation of transferrin on hepatic iron uptake: An in vitro study, Gastroenterology 72: 129–131.PubMedGoogle Scholar
  160. Zuyderhoudt, F. M. J., Linthorst, C., and Hengeveld, P., 1978a. On the iron content of human serum ferritin, especially in acute viral hepatitis and iron overload, Clin. Chim. Acta 90: 93–99.PubMedCrossRefGoogle Scholar
  161. Zuyderhoudt, F. M. J., Jorning, G. G. A., and van Gool, J., 1978b. On the non-ferritin depot iron fraction in the rat liver, Biochim. Biophys. Acta 543: 53–62.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Anatoly Bezkorovainy
    • 1
  1. 1.Rush-Presbyterian-St. Luke’s Medical CenterChicagoUSA

Personalised recommendations