Advertisement

Chemically Sensitive Field Effect Transistors

  • Jiří Janata
  • Robert J. Huber
Part of the Modern Analytical Chemistry book series (MOAC, volume 2)

Abstract

Sometimes unjustified, but nonetheless ever present need for more information continues to stimulate the development of new sensors and detectors. One of the more recent additions to the armory of these devices is the chemically sensitive field effect transistor (chemfet). It was born in the early seventies out of two very successful technologies: solid state integrated circuits and ion-selective electrodes (ise). It is still in its infancy but already out of the teething stage and with a very bright prospect ahead.

Keywords

Silicon Nitride Field Effect Transistor Drain Current Gate Insulator Metal Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zemel, J. N., Anal. Chem. 47, 255A (1975).Google Scholar
  2. 2.
    Afromowitz, M. A., and Yee, S. S., J. Bioeng. 1, 55 (1977).Google Scholar
  3. 3.
    Nagy, K., Fjeldly, T. A., and Johannessen, J. S., in Proceedings of the 153rd Annual Meeting of the Electrochemical Society, Vol. 78, Abstract 108 (1978).Google Scholar
  4. 4.
    Bergveld, P., IEEE Trans. BME-17, 70 (1970).Google Scholar
  5. 5.
    Matsuo, T., Esashi, M., and Iinuma, K., Digest of Joint Meeting of Tohoku Sections of IEEEJ, October 1971.Google Scholar
  6. 6.
    Bergveld, P., IEEE Trans. BME-19, 342 (1972).Google Scholar
  7. 7.
    Matsuo, T., and Wise, K. D., IEEE Trans. BME-21, 485 (1974).Google Scholar
  8. 8.
    Moss, S. D., Janata, J., and Johnson, C. C., Anal. Chem. 47, 2238 (1975).CrossRefGoogle Scholar
  9. 9.
    Lundstrom, I., Shivaraman, M. S., Svensson, C., and Lundkvist, L., Appl. Phys. Lett. 26, 55 (1975).CrossRefGoogle Scholar
  10. 10.
    Janata, J., and Moss, S. D., Biomed. Eng. 11, 241 (1976).Google Scholar
  11. 11.
    Kelly, R. G., Electrochim. Acta 22, 1 (1977).CrossRefGoogle Scholar
  12. 12.
    Zemel, J. N., Res. Dev., April, 38 (1977).Google Scholar
  13. 13.
    Revesz, A. G., Thin Solid Films 41, L43 (1977).CrossRefGoogle Scholar
  14. 14.
    Buck, R. P., and Hackleman, D. E., Anal. Chem. 49, 2315 (1977).CrossRefGoogle Scholar
  15. 15.
    Cheung, P., Fleming, D. G., Ko, W. H., and Neuman, M. R., eds., Workshop on Theory, Design, and Biomedical Application of Solid State Chemical Sensors, CRC Press, Cleveland, Ohio (1978).Google Scholar
  16. 16.
    Grove, A. S., Physics and Technology of Semiconductor Devices, Wiley, New York (1967).Google Scholar
  17. 17.
    Many, A., Goldstein, Y., and Grover, N. B., Semiconductor Surfaces, North-Holland, Amsterdam (1965).Google Scholar
  18. 18.
    Lewis, F. A., The Palladium Hydrogen System, Academic Press, New York (1967).Google Scholar
  19. 19.
    Lundstrom, I., and DiStefano, T., Surf. Sci. 59, 23 (1976).CrossRefGoogle Scholar
  20. 20.
    Bergveld, P., DeRooij, N. F., and Zemel, J. N., Nature 273, 438 (1978).CrossRefGoogle Scholar
  21. 21.
    Lundstrom, I., Shivaraman, M. S., and Svensson, C., Surf. Sci. 64, 497 (1977).CrossRefGoogle Scholar
  22. 22.
    Chauvet, F., and Caratge, P., C. R. Acad. Sci. Ser. V 285, 153 (1977).Google Scholar
  23. 23.
    Lundstrom, I., Shivaraman, M. S., Stilbert, L., and Svensson, C., Rev. Sci. Instrum. 47, 738 (1976).CrossRefGoogle Scholar
  24. 24.
    Shivaraman, M. S., J. Appl. Phys. 47, 5392 (1976).CrossRefGoogle Scholar
  25. 25.
    Lundstrom, I., Shivaraman, M. S., and Svensson, C., J. Appl. Phys. 46, 3876 (1975).CrossRefGoogle Scholar
  26. 26.
    Janata, J., in Workshop on Theory, Design, and Biomedical Application of Solid State Chemical Sensors (P. Chung, D. G. Fleming, W. H. Ko, and M. R. Neuman, eds.), CRC Pres, Cleveland, Ohio (1978).Google Scholar
  27. 27.
    Moss, S. D., Johnson, C. C., and Janata, J., IEEE Trans. BME-25, 49 (1978).Google Scholar
  28. 28.
    Moss, S. D., Smith, J. B., Comte, P. A., Johnson, C. C., and Astle, L., J. Bioeng. 1, 11 (1977).Google Scholar
  29. 29.
    Mohilner, D. M., in Electroanalytical Chemistry (A. J. Bard, ed.), Vol. 1, p. 241, Marcel Dekker, New York (1966).Google Scholar
  30. 30.
    Esashi, M., and Matsuo, T., in Proceedings of the 6th Conference on Solid State Devices, Tokyo (1974), Suppl. J. Jpn. Soc. Appl. Phys. 44, 339 (1975).Google Scholar
  31. 31.
    Esashi, M., and Matsuo, T., IEEE Trans. BME-25, 184 (1978).Google Scholar
  32. 32.
    Schenck, J. F., in Workshop on Theory, Design, and Biomedical Application of Solid State Chemical Devices (P. Chung, D. G. Fleming, W. H. Ko, and M. R. Neuman, eds.), CRC Press, Cleveland, Ohio (1978).Google Scholar
  33. 33.
    Schenck, J. F., J. Coll. Int. Sci. 61, 569 (1977).CrossRefGoogle Scholar
  34. 34.
    Fung, D. J., Cheung, P. W., Wong, S. H., Topich, J. A., and Ko, W. H., in Proceedings of the 153rd Annual Meeting of the Electrochemical Society, Vol. 78, Abstract 81 (1978).Google Scholar
  35. 35.
    Wise, K. D., and Weissman, R. H., Med. Biol. Eng. 9, 339 (1971).CrossRefGoogle Scholar
  36. 36.
    Cohen, R. M., Huber, R. J., Janata, J., Ure, R. W., and Moss, S. D., Thin Solid Films 53, 169 (1978).CrossRefGoogle Scholar
  37. 37.
    Eisenman, G., Glass Electrodes for Hydrogen and Other Cations, Marcel Dekker, New York (1967).Google Scholar
  38. 38.
    Ahmed, S. M., in Oxides and Oxide Films (J. W. Diggle, ed.), Vol. 1, p. 319 (1972).Google Scholar
  39. 39.
    Tadros, T. F., and Lyklema, J., J. Electroanal. Chem. 17, 267 (1968).CrossRefGoogle Scholar
  40. 40.
    Perram, J. W., Hunter, R. J., and White, H. J. L., Aust. J. Chem. 27, 461 (1974).CrossRefGoogle Scholar
  41. 41.
    Johannessen, J. S., Spicer, W. E., and Strausser, Y. E., Thin Solid Films 32, 311 (1976).CrossRefGoogle Scholar
  42. 42.
    Maguire, H. G., and Augustus, P. D., J. Electrochem. Soc. 119, 791 (1972).CrossRefGoogle Scholar
  43. 43.
    Janata, J., Briggs, D., and Davies, G. R., unpublished results.Google Scholar
  44. 44.
    Brouwer, G., Phys. Lett. 21, 399 (1966).CrossRefGoogle Scholar
  45. 45.
    Brouwer, G., J. Electrochem. Soc. 114, 743 (1967).CrossRefGoogle Scholar
  46. 46.
    Watanabe, T., Fujishima, A., and Honda, K., Chem. Lett., 897 (1974).Google Scholar
  47. 47.
    Janata, J., Blackburn, G., and Jonkman, A., unpublished results.Google Scholar
  48. 48.
    Matsuo, T., and Esashi, M., in Proceedings of the 153rd Annual Meeting of the Electrochemical Society, Vol. 78, Abstract 83 (1978).Google Scholar
  49. 49.
    Koryta, J., Ion Selective Electrodes, Cambridge University Press, Cambridge (1975).Google Scholar
  50. 50.
    Buck, R. P., Electroanalytical Chemistry of Membranes, Crit. Rev. Anal. Chem. 5(4), 323 (1975).CrossRefGoogle Scholar
  51. 51.
    Aboaf, J. A., J. Electrochem. Soc. 119, 948 (1967).CrossRefGoogle Scholar
  52. 52.
    Scott, J., and Olmstead, J., R.C.A. Review 26 357 (1965).Google Scholar
  53. 53.
    Moss, S. D., in Workshop on Theory, Design, and Biomedical Application of Solid State Chemical Sensors (P. Chung, D. G. Fleming, W. H. Ko, and M. R. Neuman, eds.), CRC Press, Cleveland, Ohio (1978).Google Scholar
  54. 54.
    Fiedler, U., and Ruzicka, J., Anal Chim. Acta 67, 179 (1973).CrossRefGoogle Scholar
  55. 55.
    Griffiths, G. H., Moody, G. J., and Thomas, J. D. R., Analyst 97, 420 (1972).CrossRefGoogle Scholar
  56. 56.
    McBride, P. T., Janata, J., Comte, P. A., Moss, S. D., and Johnson, C. C., Anal Chim. Acta 101, 239 (1978).CrossRefGoogle Scholar
  57. 57.
    Band, D. M., Kratochvil, J., and Treasure, T., J. Physiol 265, 5P (1977).Google Scholar
  58. 58.
    Brown, H. M., Pemberton, J. P., and Owen, J. D., Anal. Chim Acta 85, 26 (1976).CrossRefGoogle Scholar
  59. 59.
    LeBlanc, O. H., Jr., Brown, J. F., Klebe, J. F., Niedrach, L. W., Slusarczuk, G. M. J., and Stoddard, W. M., Jr., J. Appl. Physiol 40, 644 (1976).Google Scholar
  60. 60.
    Pungor, E., Anal. Chem. 39, 28A (1967).CrossRefGoogle Scholar
  61. 61.
    Shiramizu, B. T., Janata, J., and Moss, S. D., Anal. Chim. Acta 108, 161 (1979).CrossRefGoogle Scholar
  62. 62.
    Allcock, H. R., Angew. Chem. Int. Ed. 16, 147 (1977).CrossRefGoogle Scholar
  63. 63.
    Bray, P. T., Clark, G. C. F., Moody, G. J., and Thomas, J. D. R., Clin. Chim. Acta 77, 69 (1977).CrossRefGoogle Scholar
  64. 64.
    Lindner, E., Toth, K., and Pungor, E., Anal Chem. 48, 1071 (1976).CrossRefGoogle Scholar
  65. 65.
    Morf, W. E., Lindner, E., and Simon, W., Anal Chem. 48, 1596 (1976).CrossRefGoogle Scholar
  66. 66.
    Rechnitz, G. A., Chem. Eng. News, January, 27, 29 (1975).CrossRefGoogle Scholar
  67. 67.
    Meyerhoff, N., and Rechnitz, G. A., Science 195, 494 (1977).CrossRefGoogle Scholar
  68. 68.
    Alexander, P. W., and Rechnitz, G. A., Anal Chem. 46, 860 (1974).CrossRefGoogle Scholar
  69. 69.
    Janata, J., J. Am. Chem. Soc. 97, 2914 (1975).CrossRefGoogle Scholar
  70. 70.
    Aizawa, M., Kato, S., and Suzuki, S., J. Membr. Sci. 2, 125 (1977).CrossRefGoogle Scholar
  71. 71.
    Wobschall, D., and McKeon, C., B.B.A. (Biochim. Biophys. Acta) 413, 317 (1975).Google Scholar
  72. 72.
    Barfort, P., Arquilla, E. R., and Vogelhut, P. O., Science 160, 1119 (1978).CrossRefGoogle Scholar
  73. 73.
    Arwin, H. R., Vastra, F., and Lundstrom, K. I., German Patent No. 2643871 (1977).Google Scholar
  74. 74.
    Johnson, C. C., Moss, S. D., and Janata, J., U.S. Patent No. 4,020,380 (1977).Google Scholar
  75. 75.
    Janata, J., and Janata, J., U.S. Patent No. 3,966,580 (1976).Google Scholar
  76. 76.
    Martenson, K., and Mosbach, K., Biotech. Bioeng. 14, 715 (1972).CrossRefGoogle Scholar
  77. 77.
    Comte, P. A., and Janata, J., Anal. Chim. Acta 101, 247 (1978).CrossRefGoogle Scholar
  78. 78.
    Leistiko, O., Grove, A. S., and Sah, C. T., IEEE Trans. Electron. Dev. ED-12, 248 (1965).CrossRefGoogle Scholar
  79. 79.
    Vadasz, L., and Grove, A. S., IEEE Trans. Electron. Dev. ED-13, 863 (1966).CrossRefGoogle Scholar
  80. 80.
    Grove, A. S., Deal, B. E., Snow, E. H., and Sah, C. T., Solid State Electron. 8, 145 (1965).CrossRefGoogle Scholar

SUPPLEMENTARY References

  1. Leistiko, O., The selectivity and temperature characteristics of ISFETs, Phys. Scr. 18, 445–450 (1978).CrossRefGoogle Scholar
  2. Vlasov, Yu. G., Ion selective field effect transistors (ISFET)—new kind of electrodes for chemical analysis and biomedical studies (in Russian), Zh. Prikl. Khim. 52(1), 3–17 (1979).Google Scholar
  3. Bos, M., Bergveld, P., and Van Veen-Blaauw, A. M. W., The ion sensitive field effect transistor in rapid acid-base titrations, Anal. Chim. Acta 109, 145–148 (1979).CrossRefGoogle Scholar
  4. Janata, J., and Huber, R. J., Ion-sensitive field effect transistors, Ion Select. Electr. Rev. 1, 31–79 (1979).Google Scholar
  5. McKinley, B. A., Saffle, J., Jordan, W. S., Janata, J., Moss, S. D., and Westenskow, D. R., In vivo continuous monitoring of K+ in animals using ISFETs, Med. Instrum. 14, 93 (1980).Google Scholar
  6. Zemel, J. N., Chemically sensitive devices, Surf. Sci. 86, 322 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Jiří Janata
    • 1
  • Robert J. Huber
    • 2
  1. 1.Department of BioengineeringUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Electrical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations