Platyrrhine Origins

A Reappraisal of the Dental Evidence
  • R. F. Kay
Part of the Advances in Primatology book series (AIPR)


Primatologists are generally agreed that living Neotropical primates are monophyletic. However, opinion is deeply divided when it comes to the question of their origins. Currently, three families are considered by different authors to be ancestral to the group—Adapidae, Omomyidae, or Old World Anthropoidea (via either Omomyidae or Adapidae). Advocates of any of these groups for platyrrhine ancestry find it difficult to account, at the same time, for the adaptive similarity of Old and New World anthropoids and their present mutual geographic isolation. This had led to two very different opinions about platyrrhine origins (Fig. 1). One view is that separate stocks of omomyids or adapids gave rise to Old and New World anthropoids. Although this requires the assumption that the numerous adaptive and morphological similarities between Old and New World anthropoids were attained convergently it has considerable paleogeographic advantages (e.g., demonstrated land bridges between the northern continents, and plausible island-hopping routes between northern and southern continents at the appropriate times in the past [see Simons (1976) for a review]). The alternative is that Neotropical primates take their origin from an African anthropoid which found its way across the South Atlantic ocean at a time when the intercontinental distance was a minimum of 700 miles. In spite of this obvious difficulty, the latter scheme has the advantage that the apparent derived features of Old and New World anthropoids need only have evolved once in a common anthropoid ancestor.


Wear Surface World Monkey Late Eocene Occlusal Contact Wear Facet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ba Maw, Ciochon, R. L. and Savage, D. E., 1979, Late Eocene of Burma yields earliest anthropoid primate, Pondaungia cotteri, Nature (London) 282: 65–67.CrossRefGoogle Scholar
  2. Cartmill, M., 1975, Strepsirhine basicranial structures and the affinities of the Cheirogaleidae, in: Phylogeny of the Primates: A Multidisciplinary Approach ( W. P. Luckett and F. S. Szalay, eds.), pp. 313–356, Plenum Press, New York.CrossRefGoogle Scholar
  3. Cartmill, M., and Kay, R. F., 1978, Carnio-dental morphology, tarsier affinities, and primate sub-orders, in: Recent Advances in Primatology, Vol. 3, Evolution ( D. J. Chivers and K. A. Joysey, eds.), pp. 205–213, Academic Press, London.Google Scholar
  4. Delson, E., 1975, Evolutionary history of the Cercopithecidae, in: Contributions to Primalology, Vol. 5 ( F. S. Szalay, ed.), pp. 167–217, Karger, Basel.Google Scholar
  5. Every, R. G., 1970, Sharpness of teeth in man and other primates, Postilla 143: 1–30.Google Scholar
  6. Gazin, C. L., 1958, A review of the middle and upper Eocene primates of North America, Smithsonian Misc. Coll. 136: 1–112.Google Scholar
  7. Gidley, J. W., 1923, Paleocene primates of the Fort Union, with discussion of relationships of Eocene primates, Proc. U.S. Natl. Mus. 63: 1–38.CrossRefGoogle Scholar
  8. Gingerich, P. D., 1975, A new genus of Adapidae (Mammalia, Primates) from the late Eocene of southern France, and its significance for the origin of higher primates, Univ. Mich. Contrib. Mus. Paleontol. 24: 163–170.Google Scholar
  9. Gregory, W. K., 1915, On the relationship of the Eocene lemur Notharctus to the Adapidae and to other primates, Bull. Geol. Soc. Am. 26: 419–446.Google Scholar
  10. Gregory, W. K., 1916, Studies on the evolution of the primates, Bull. Am. Mus. Nat. Hist. 35: 239–355.Google Scholar
  11. Gregory, W. K., 1920, On the structure and relations of Notharctus, an American Eocene primate, Mein. Am. Mus. Nat. Hist. 3 (2): 49–243.Google Scholar
  12. Hershkovitz, P. 1974, A new genus of late Oligocene monkey (Cebidae, Platyrrhini) with notes on postorbital closure and platyrrhine evolution, Folies Primatol. 21: 1–35.CrossRefGoogle Scholar
  13. Hershkovitz, P., 1977, Living New World Monkeys (Platyrrhini), with an Introduction to Primates, Vol. 1, University of Chicago Press, Chicago.Google Scholar
  14. Hoffstetter, R., 1969, Un primate de l’Oligocène inférieur Sud-Américain: Branisella boliviana gen. et sp. nov., C. R. Acad. Sci. Paris, Sér. D 269: 434–437.Google Scholar
  15. Hoffstetter, R., 1974, Phylogeny and geographical deployment of the primates, J. Hum. Evol. 3: 327–350.CrossRefGoogle Scholar
  16. Hoffstetter, R., 1977, Phylogénie des primates, Bull. Mém. Soc. Anthropol. Paris, 4 (13): 327–346.CrossRefGoogle Scholar
  17. Kay, R. F., 1977, The evolution of molar occlusion in the Cercopithecidae and early catarrhines, Am. J. Phys. Anthropol. 46: 327–352.PubMedCrossRefGoogle Scholar
  18. Kay, R. F. and Hiiemae, K. M., 1974, Jaw movement and tooth use in recent and fossil primates, Am. J. Phys. Anthropol. 40: 227–256.PubMedCrossRefGoogle Scholar
  19. Kinzey, W. G., 1972, Canine teeth of the monkey, Callicebus moloch: Lack of sexual dimorphism, Primates 13: 365–369.CrossRefGoogle Scholar
  20. Maier, W., 1977, Die bilophodonten molaren der Indriidae (Primates)—ein evolutionsmorphologischer modellfall, Z. Morphol. Anthropol. 68: 307–344.PubMedGoogle Scholar
  21. Osborn, J. W., 1978, Morphogenetic gradients: Fields versus clones, in: Development, Function and Evolution of Teeth ( P. M. Butler and K. A. Joysey, eds.), pp. 171–202, Academic Press, New York.Google Scholar
  22. Remane, A., 1960, Zahne and Gebeiss, in: Primatologia III(2) (H. Hofer, A. H. Schultz, and D. Stark, eds. ), pp. 637–846.Google Scholar
  23. Rosenberger, A., 1977, Xenothrix and ceboid phylogeny, J. Hum. Evol. 6: 461–481.CrossRefGoogle Scholar
  24. Schwartz, J. H., Tattersall, I. and Eldridge, N., 1978, Phylogeny and classification of the primates revisited, Yearb. Phys. Anthropol. 22: 95–133.Google Scholar
  25. Simons, E. L., 1961, The dentition of Ourayia: Its bearing on relationships of omomyid pro-simians, Postilla 54: 1–20.Google Scholar
  26. Simons, E. L., 1972, Primate Evolution: An Introduction to Man’s Place in Nature, Macmillan, New York.Google Scholar
  27. Simons, E. L., 1976, The fossil record of primate phylogeny, in: Molecular Anthropology ( M. Goodman and R. Tashian, eds.), pp. 35–662, Plenum Press, New York.CrossRefGoogle Scholar
  28. Simpson, G. G., 1955, The Phenacolemuridae, new family of early primates, Bull. Am. Mus. Nat. Hist. 105 (5): 415–441.Google Scholar
  29. Stehlin, H. G., 1916, Die sügetiere des schweizerischen Eocänes: Kritischer Katalog der materialen, Überhandlungen Schweizerishen Paleöntol. Ges. 38: 1297–1552.Google Scholar
  30. Szalay, F. S., 1975, Phylogeny of higher primate taxa: The basicranial evidence, in: Phylogeny of the Primates ( P. Luckett and F. S. Szalay, eds.), pp. 91–126, Plenum Press, New York.CrossRefGoogle Scholar
  31. Szalay, F. S., 1976, Systematics of the Omomyidae (Tarsiiformes, Primates) taxonomy, phylogeny, and adaptations, Bull. Am. Nat. Hist. 156 (3): 157–450.Google Scholar
  32. Tarrant, L. H., and Swindler, D. R., 1973, Prenatal dental development in the black howler monkey (Alouatta caraya), Am. J. Phys. Anthropol. 38: 255–260.PubMedCrossRefGoogle Scholar
  33. Wortman, J. L., 1904, Studies of Eocene Mammalia in the Marsh collection, Peabody Museum. Part II. Primates, Suborder Anthropoidea, Am. J. Sci. 17: 204–250.Google Scholar
  34. Zingeser, M. R., 1969, Cercopithecoid canine tooth honing mechanisms, Am. J. Phys. Anthropol. 31: 285–214.CrossRefGoogle Scholar
  35. Zingeser, M. R., 1971, The prevalence of canine tooth honing in primates (abstract), Am. J. Phys. Anthropol. 25: 300.Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • R. F. Kay
    • 1
  1. 1.Department of AnatomyDuke University Medical CenterDurhamUSA

Personalised recommendations