Are the Classic Transplantation Antigens Primitive Cell-Surface Antibodies?

  • Per A. Peterson
  • Olle Kämpe


The existence of a well-developed immune system is restricted to the vertebrates. Foreign substances are recognized by antibodies that exhibit an almost endless variety of antigen-combining sites. Although some of the antibody variability may be due to somatic mutations, the vertebrate genome contains substantial numbers of genes coding for immunoglobulin variable regions (see Scidman et al., 1978). It appears possible that these sets of genes evolved under environmental selection by a gradual expansion of duplicated and mutated genes. At some time during the course of this development, the gene products may have occurred as a family of proteins displaying a restricted genetic polymorphism. These ancestral proteins may have participated in recognitive processes such as the discrimination between self and nonself wherein genetic polymorphism should have provided a selective advantage. Assuming that the evolution of the variable regions included organisms lacking a circulatory system, it can be envisaged that the predecessors of the immunoglobulins were cell-surface proteins.


Complete Amino Acid Sequence Transplantation Antigen Amino Acid Sequence Determination CNBr Fragment Anti Seron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Binz, H., and Wigzell H., 1977, Idiotypic, alloantigen-reactive T lymphocyte receptors and their use to induce specific transplantation tolerance, Prog. Allergy 23:154–198.PubMedGoogle Scholar
  2. Bodmer, W.F., 1972, Evolutionary significance of the HLA system, Nature (London) 237:139–145.CrossRefGoogle Scholar
  3. Bubbers, J.E., Chen, S., and Lilly, F., 1978, Nonrandom inclusion of the H-2K and H-2D antigens in Friend virus particles from mice of various strains, J. Exp. Med. 147:340–351.PubMedCrossRefGoogle Scholar
  4. Callahan, G.N., Allison, J.P., Pellegrino, M.A., and Reisfeld, R.A., 1979, Physical association of histocompatibility antigens and tumor-associated antigens on the surface of murine lymphoma cells, J. Immunol. 122:80–81.Google Scholar
  5. Coligan, J.E., Kindt, T.J., Ewenstein, B.M., Uehara, H., Nisizawa, T., and Nathenson, S.G., 1978, Primary structure of murine major histocompatibility complex alloantigens: Amino acid sequence studies of the cyanogen bromide fragments of the H-2 K b glycoprotein, Proc. Natl. Acad. Sci. U.S.A. 75:3390–3394.PubMedCrossRefGoogle Scholar
  6. Cunningham, B.A., Wang, J.L., Berggard, I., and Peterson, P.A., 1973, The complete amino acid sequence of β2-microglobulin, Biochemistry 12:4811–4822.PubMedCrossRefGoogle Scholar
  7. Dayhoff, M.O., Hunt, L.T., Barker, W.C., and Orcutt, B.C., 1976, Atlas of Protein Sequence and Structure, Vol. 5 (M.O. Dayhoff, ed.), Suppl. 1 and 2, National Biomedical Research Foundation, Washington, D.C.Google Scholar
  8. Doherty, P.A., Blanden, R.V., and Zinkernagel, R.M., 1976, Specificity of virus-immune effector T-cells for H-2K or H-2D compatible interactions: Implications for H-antigen diversity, Transplant. Rev. 29:89–124.PubMedGoogle Scholar
  9. Edelman, G.M., 1970, The covalent structure of a human IgG-immunoglobulin. XI. Functional implications, Biochemistry 9:3197–3205.PubMedCrossRefGoogle Scholar
  10. Edelman, G.M., and Gall, W.E., 1969, The antibody problem, Annu. Rev. Biochem. 38:415–466.PubMedCrossRefGoogle Scholar
  11. Gaily, J.A., and Edelman, G.M., 1972, The genetic control of immunoglobulin synthesis, Annu. Rev. Genet. 6:1–46.CrossRefGoogle Scholar
  12. Germain, R.N., Dorf, M.E., and Benacerraf, B., 1975, Inhibition of T-lymphocyte mediated tumor-specific lysis by alloantisera directed against the H-2 serological specificities of the tumor, J. Exp. Med. 142:1023–1028.PubMedCrossRefGoogle Scholar
  13. Grey, H.M., Kubo, R.T., Colon, S.M., Poulik, M.D., Cresswell, P., Springer, T., Turner, M., and Strominger, J.L., 1973, The small subunit of HL-A antigens is β2-microglobulin, J. Exp. Med. 138:1608–1612.PubMedCrossRefGoogle Scholar
  14. Gross, E., and Witkopf, B., 1962, Nonenzymatic cleavage of peptide bonds: The methionine residues in bovine pancreatic ribonuclease, J. Biol. Chem. 237:1856–1860.PubMedGoogle Scholar
  15. Hale, A.H., Whitte, O.W., Baltimore, D., and Eisen, H.N., 1978, Vesicular stomatitis virus glycoprotein is necessary for H-2-restricted lysis of infected cells by cytotoxic T-lymphocytes, Proc. Natl. Acad. Sci. U.S.A. 75:970–974.PubMedCrossRefGoogle Scholar
  16. Hecht, T.T., and Summers, D.F., 1976, Interactions of vesicular stomatitis virus with murine cell surface antigens, J. Virol. 19:833–845.PubMedGoogle Scholar
  17. Helenius, A., Morein, B., Fries, E., Simons, K., Robinson, P., Schirrmacher, V., Terhorst, C., and Strominger, J.L., 1978, Human (HLA-A and HLA-B) and murine (H-2K and H-2D) histocompatibility antigens are cell surface receptors for Semliki Forest virus, Proc. Natl. Acad. Sci. U.S.A. 75:3846–3850.PubMedCrossRefGoogle Scholar
  18. Henning, R., Schrader, J.E., and Edelman, G.M., 1976, Antiviral antibodies inhibit the lysis of tumor cells by anti-H-2 sera, Nature (London) 263:689–691.CrossRefGoogle Scholar
  19. Hildemann, W.H., Raison, R.L., Cheong, G., Hull, C.J., Akaka, L., and Okamoto, J., 1977, Immunological specificity and memory in a scleractinian coral, Nature (London) 270:219–223.CrossRefGoogle Scholar
  20. Hill, R.L., 1965, Hydrolysis of proteins, Adv. Protein Chem. 20:37–107.PubMedCrossRefGoogle Scholar
  21. Hill, R.L., Delaney, R., Fellows, R.E., Jr., and Lebovitz, M.E., 1966, The evolutionary origins of the immunoglobulins, Proc. Natl. Acad. Sci. U.S.A. 56:1762–1769.PubMedCrossRefGoogle Scholar
  22. Inman, J.K., 1974, Multispecificity of the antibody combining region and antibody diversity, in: The Immune System (E.E. Sercarz, A.R. Williamson, and C.F. Fox, eds.), pp. 37–52, Academic Press, New York.Google Scholar
  23. Jacobson, G.R., Schaffer, M.H., Stark, G.R., and Vanaman, T.C., 1973, Specific chemical cleavage in high yield at the amino peptide bonds of cysteine and cystine residues, J. Biol. Chem. 248:6583–6591.PubMedGoogle Scholar
  24. Klareskog, L., Banck, G., Forsgren, A., and Peterson, P.A., 1978, Binding of HLA antigen-containing liposomes to bacteria, Proc. Natl. Acad. Sci. U.S.A. 75:6197–6201.PubMedCrossRefGoogle Scholar
  25. Koszinowski, U., and Ertl, H., 1975a, Lysis mediated by T cells and restricted by H-2 antigen of target cells infected with vaccinia virus, Nature (London) 255:552–554.CrossRefGoogle Scholar
  26. Koszinowski, U., and Ertl, H., 1975b, Target cell-dependent T cell-mediated lysis of vaccinia virus-infected cells, Eur. J. Immunol. 5:245–251.PubMedCrossRefGoogle Scholar
  27. Kvist, S., Östberg, L., and Peterson, P.A., 1978a, Reactions and crossreactions of a rabbit anti-H2 antigen serum, Scand. J. Immunol. 7:265–276.PubMedCrossRefGoogle Scholar
  28. Kvist, S., Östberg, L., Person, H., Philipson, L., and Peterson, P.A., 1978b, Molecular association between transplantation antigens and a cell surface antigen in an adenovirus-transformed cell line, Proc. Natl. Acad. Sci. U.S.A. 75:5674–5678.PubMedCrossRefGoogle Scholar
  29. López de Castro, J.A., Orr, H.T., Robb, R.J., Kostyk, T.G., Mann, D.L., and Strominger, J.L., 1979, Complete amino acid sequence of papain-solubilized human histocompatibility antigen, HLA-B7. 1. Isolation and amino acid composition of fragments and of tryptic and chymotryptic peptides, Biochemistry 18:5704–5711.CrossRefGoogle Scholar
  30. Nakamuro, K., Tanigaki, N., and Pressman, D., 1973, Multiple common properties of human ß2-microglobulin and the common portion fragment derived from HL-A antigen molecules, Proc. Natl. Acad. Sci. U.S.A. 70:2863–2865.PubMedCrossRefGoogle Scholar
  31. Neauport-Sautes, C., Lilly, F., Silvestre, D., and Kourilsky, F.M., 1973, Independence of H-2K and H-2D antigenic determinants on the surface of mouse lymphocytes, J. Exp. Med. 137:511–526.PubMedCrossRefGoogle Scholar
  32. Orr, H.T., Lancet, D., Robb, R.J., López de Castro, J.A., and Strominger, J.L., 1979, The heavy chain of human histocompatibility antigen, HLA-B7, contains an immunoglobinlike region, Nature 282:266–270.PubMedCrossRefGoogle Scholar
  33. Orr, H.T., López de Castro, J.A., Parham, P., Pleogh, H.L., and Strominger, J.L., 1979a Comparison of amino acid sequences of two human histocompatibility antigens, HLA-A2 and HLA-B7: Location of putative alloantigenic sites, Proc. Natl. Acad. Sci. U.S.A. 76:4395–4399.CrossRefGoogle Scholar
  34. Orr, H.T., López de Castro, J. A., Lancet, D., and Strominger, J.L., 1979b, Complete amino acid sequence of a papain-solubilized histocompatibility antigen, HLA-B7. 2. Sequence determination and search for homologies, Biochemistry 18:5711–5720.CrossRefGoogle Scholar
  35. Parham, P., Alpert, B.W., Orr, H.T., and Strominger, J.L., 1977, Carbohydrate moiety of HLA-antigens, J. Biol. Chem. 252:7555–7567.PubMedGoogle Scholar
  36. Peterson, P.A., Cunningham, B.A., Berggard, I., and Edelman, G.M., 1972, β 2-Microglobulin—a free immunoglobulin domain, Proc. Natl. Acad. Sci. U.S.A. 69:1697–1701.PubMedCrossRefGoogle Scholar
  37. Peterson, P.A., Rask, L., and Lindblom, J.B., 1974, Highly purified papain-solubilized HLA-antigens contain β 2-microglobulin, Proc. Natl. Acad. Sci. U.S.A. 71:35–39.PubMedCrossRefGoogle Scholar
  38. Peterson, P.A., Rask, L., Sege, K., Klareskog, L., Anundi, H., and Ostberg, L., 1975, Evolutionary relationship between immunoglobulins and transplantation antigens, Proc. Natl. Acad. Sci. U.S.A. 72:1612–1616.PubMedCrossRefGoogle Scholar
  39. Peterson, P.A., Östberg, L., and Rask, L., 1977, β 2-Microglobulin and the major histocompatibility complex, Adv. Cancer Res. 24:115–163.PubMedCrossRefGoogle Scholar
  40. Poljak, R.J., 1975, Three-dimensional structure, function and genetic control of immunoglobulins, Nature (London) 256:373–376.CrossRefGoogle Scholar
  41. Poulsen, K., Fraser, K.J., and Haber, E., 1972, An active derivative of rabbit antibody light chain composed of the constant and the variable domains held together only by a native disulfide bond, Proc. Natl. Acad. Sci. U.S.A. 69:2495–2499.PubMedCrossRefGoogle Scholar
  42. Rask, L., Lindblom, J.B., and Peterson, P.A., 1976, Structural and immunological similarities between HLA antigens for three loci, Eur. J. Immunol. 6:93–100.PubMedCrossRefGoogle Scholar
  43. Richards, F.F., Anzel, L.M., Konigsberg, W.H., Manjula, B.N., Poljak, R.J., Rosenstein, R.W., Saul, F., and Varga, J.M., 1974, Polyfunctional antibody combining regions, in: The Immune System (E.E. Sercarz, A.R. Williamson, and C.F. Fox, eds.), pp. 53–68, Academic Press, New York.Google Scholar
  44. Richards, F.F., Konigsberg, W.H., Rosenstein, R.W., and Varga, J.M., 1975, On the specificity of antibodies, Science 187:130–137.PubMedCrossRefGoogle Scholar
  45. Rosenthal, A., 1978, Determinant selection and macrophage function in genetic control of the immune response, Immunol. Rev. 40:136–152.PubMedCrossRefGoogle Scholar
  46. Schrader, J.W., and Edelman, G.M., 1976, Participation of the H-2 antigens of tumor cells in their lysis by syngeneic T cells, J. Exp. Med. 143:601–604.PubMedCrossRefGoogle Scholar
  47. Schrader, J.W., Cunningham, B.A., and Edelman, G.M., 1975, Functional interactions of viral and histocompatibility antigens at tumor cell surfaces, Proc. Natl. Acad. Sci. U.S.A. 72:5066–5070.PubMedCrossRefGoogle Scholar
  48. Scidman, J.G., Leder, A., Nav, M., Norman, B., and Leder, P., 1978, Antibody diversity, Science 202:11–17.CrossRefGoogle Scholar
  49. Shearer, G.M., Rehn, T.G., and Garbarino, C.A., 1975, Cell-mediated lympholysis of trinitrophenyl-modified antologous lymphocytes, J. Exp. Med. 141:1348–1364.PubMedCrossRefGoogle Scholar
  50. Shreffler, D., and David, C.S., 1975, The H-2 major histocompatibility complex and the I immune response region: Genetic variation, function and organization, Adv. Immunol. 20:125–196.PubMedCrossRefGoogle Scholar
  51. Singer, S.J., and Doolittle, R.F., 1966, Antibody active sites and immunoglobulin molecules, Science 153:13–25.PubMedCrossRefGoogle Scholar
  52. Smithies, O., and Poulik, M.D., 1972, Initiation of protein synthesis at an unusual position in an immunoglobulin gene?, Science 175:187–189.PubMedCrossRefGoogle Scholar
  53. Snary, D., Barnstable, C.J., Bodmer, W.F., and Crumpton, M.J., 1977, Molecular structure of human histocompatibility antigens: The HLA-C-series, Eur. J. Immunol. 8:580–585.CrossRefGoogle Scholar
  54. Springer, T.A., and Strominger, J.L., 1976, Detergent-soluble HLA-antigens contain a hydrophilic region at the COOH-terminus and a penultimate hydrophobic region, Proc. Natl. Acad. Sci. U.S.A. 73:2481–2485.PubMedCrossRefGoogle Scholar
  55. Talmage, D.E., 1959, Immunological specificity, Science 129:1643–1648.PubMedCrossRefGoogle Scholar
  56. Terhorst, C., Robb, R., Jones, C., and Strominger, J.L., 1977, Further structural studies of the heavy chain of HLA-antigens and its similarity to immunoglobulins, Proc. Natl. Acad. Sci. U.S.A. 74:4002–4006.PubMedCrossRefGoogle Scholar
  57. Trägårdh, L., Klareskog, L., Curman, B., Rask, L., and Peterson, P.A., 1978, Isolation and properties of detergent-solubilized HLA antigens obtained from platelets, Scand. J. Immunol. 8:563–568.PubMedCrossRefGoogle Scholar
  58. Trägårdh, L., Wiman, K., Rask, L., and Peterson, P.A., 1979a, Fragmentation of human transplantation antigen heavy chains by limited proteolysis, acid cleavage and cyanogen bromide treatment, Biochemistry 18:1322–1328.PubMedCrossRefGoogle Scholar
  59. Trägårdh, L., Curman, B., Wiman, K., Rask, L., and Peterson, P.A., 1979b, Chemical, physical-chemical, and immunological properties of papain-solubilized human transplantation antigens, Biochemistry 18:2218–2226.PubMedCrossRefGoogle Scholar
  60. Trägårdh, L., Rask, L., Wiman, K., Fohlman, J., and Peterson, P.A., 1979c, Amino acid sequence of an immunoglobulin-like HLA antigen heavy chain domain, Proc. Natl. Acad. Sci. U.S.A. 76:5839–5842.PubMedCrossRefGoogle Scholar
  61. Trägårdh, L., Rask, L., Wiman, K., and Peterson, P.A., 1979d, Primary structure of pooled, papain-solubilized HLA-A, -B, and -C antigens, Scand. J. Immunol. 10:597–600.PubMedCrossRefGoogle Scholar
  62. Trägårdh, L., Rask, L., Wiman, K., Fohlman, J., and Peterson, P.A., 1980, Complete amino acid sequence of pooled papain-solubilized HLA-A, -B, and -C antigens: Relatedness to immunoglobulins and internal homologies, Proc. Natl. Acad. Sci. U.S.A. 77:1129–1133.PubMedCrossRefGoogle Scholar
  63. Walter, G., Maizel, J.V., Jr., 1974, The polypeptides of adenovirus, Virology 57:402–408.PubMedCrossRefGoogle Scholar
  64. Wikler, M., Titani, K., Shinoda, T., and Putnam, F.W., 1967, The complete amino acid sequence of a λtype Bence-Jones protein, J. Biol. Chem. 242:1668–1670.PubMedGoogle Scholar
  65. Wiman, K., Trägådh, L., Rask, L., and Peterson, P.A., 1979, Similarities between immunoglobulins and transplantation antigens in amino acid sequence and disulfide bond distribution, Eur. J. Biochem. 95:265–273.PubMedCrossRefGoogle Scholar
  66. Zarling, D.A., Keshet, I., Watson, A., and Bach, F.H., 1978, Association of mouse major histocompatibility and Rauscher murine leukemia virus envelope glycoprotein antigens on leukemia cells and their recognition by syngenic virus-immune cytotoxic T-lymphocytes, Scand. J. Immunol. 8:497–508.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Per A. Peterson
    • 1
  • Olle Kämpe
    • 1
  1. 1.Department of Cell Research, The Wallenberg LaboratoryUniversity of UppsalaUppsalaSweden

Personalised recommendations