Nonlinear Effects in Acoustic Imaging

  • Thomas G. Muir
Part of the Acoustical Imaging book series (ACIM, volume 9)


The fundamental mechanisms of sound propagation are nonlinear. At low frequencies and/or intensities, linearity can usually be assumed but this is often not the case in ultrasonic imaging.


Mach Number Nonlinear Effect Seismic Source Source Intensity Acoustic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. T. Beyer, Parameter of nonlinearity in fluids, J. Acoust. Soc. Am. 32:719 (1960).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    D. T. Blackstock, Connection between the Fay and Fubini solutions for plane sound waves of finite amplitude, J. Acoust. Soc. Am. 39:1019 (1966).MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    J. A. Shooter, T. G. Muir, and D. T. Blackstock, Acoustic saturation of spherical waves in water, J. Acous. Soc. Am. 55:54 (1974).CrossRefGoogle Scholar
  4. 4.
    T. G. Muir and E. L. Carstensen, Prediction of nonlinear acoustic effects at biomedical frequencies and intensitites, submitted to J. Ultrasound in Med. & Biol. (1980).Google Scholar
  5. 5.
    E. L. Cartensen, W. K. Law, N. D. McKay and T. G. Muir, Demonstration of nonlinear acoustical effects at biomedical frequencies and intensities, submitted to J. Ultrasound in Med. & Biol. (1980).Google Scholar
  6. 6.
    T. G. Muir, L. L. Mellenbruch, and J. C. Lockwood, Reflection of finite-amplitude waves in parametric array, J. Acoust. Soc. Am. 62:271 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    J. J. Markham, R. T. Beyer, and R. B. Lindsay, Absorption of sound in fluids, Rev. Mod. Phys. 23:353 (1951).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    P. J. Carson, P. R. Fischella, and T. V. Oughton, Ultrasonic power and intensity produced by diagnostic ultrasound equipment, J. Ultrasound in Med. & Biol. 3:341 (1978).CrossRefGoogle Scholar
  9. 9.
    J. C. Lockwood, T. G. Muir, and D. T. Blackstock, Directive harmonic generation in the radiation field of a circular piston, J. Acoust. Soc. Am. 53:1148 (1973).ADSCrossRefGoogle Scholar
  10. 10.
    M. Born and E. Wolf, “Principles of Optics,” Pergamon Press, New York (1965).Google Scholar
  11. 11.
    E. P. Cornet, Focusing of an N wave by a spherical mirror, M. A. Thesis, Univ. Texas at Austin (1972).Google Scholar
  12. 12.
    R. D. Essert and D. T. Blackstock, Axisymmetric propagation of a spherical N wave in a cylindrical tube, J. Acoust. Soc. Am. 66(S1):S68(A)(1979).ADSCrossRefGoogle Scholar
  13. 13.
    W. D. Beasley, J. D. Brooks, and R. J. Barger, A laboratory investigation of N-wave focusing, NASA Langley Report TN D5306 (1969).Google Scholar
  14. 14.
    E. J. Giglio, W. M. Ludlam, and S. Whittenburg, Improvement in the measurement of intraocular distances using ultrasound, J. Acoust. Soc. Am. 44:1359 (1968).ADSCrossRefGoogle Scholar
  15. 15.
    T. G. Muir, C. M. Talkington, B. S. Shaw, R. S. Adair and J. G. Willette, Parametric echoscanner for biomedical diagnostics, J. Acoust. Soc. Am. 53:382(A)(1973).ADSCrossRefGoogle Scholar
  16. 16.
    J. Bjørnø and S. Grinderslev, Investigation of a parametric echoscanner for medical diagnosis, Proc. 8th Int. Symp. Nonlin. Acous. — Paris 1978, J. de Physique (in publication).Google Scholar
  17. 17.
    A. M. Sutin, Influence of nonlinear effects on the properties of acoustic focusing systems, Sov. Phys. Acous. 24; 334 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Thomas G. Muir
    • 1
  1. 1.Applied Research LaboratoriesThe University of Texas at AustinAustinUSA

Personalised recommendations