Advertisement

Imaging in NDE

  • B. R. Tittmann
Part of the Acoustical Imaging book series (ACIM, volume 9)

Abstract

The ultimate objective of most nondestructive evaluation (NDE) studies is to develop a capability for predetermining the inservice failure probabilities of a structural component with the best possible confidence. The role that ultrasonic imaging can be expected to play in the failure prediction process is reviewed. Included are discussions of the basic concepts of imaging in NDE, a survey of types of NDE imaging systems, and some key problem areas which need to be addressed in the future.

Keywords

Rayleigh Wave Scattered Field Acoustic Image Ultrasonic Beam Reference Mirror 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Coffin and C. F. Tiffany, How the Air Force Assures Safe, Durable Progress, “Metal Progress” p. 26 (1976).Google Scholar
  2. 2.
    S. T. Rolfe, “Use of Fracture Mechanics in Design,” International Metallurgical Reviews, 19: 183 (1974)CrossRefGoogle Scholar
  3. 3.
    B. R. Tittmann, O. Buck, L. Ahlberg, M. deBilly, F. Cohen-Tenoudji, A. Jungmen, and G. Quentin, Surface Wave Scattering from Elliptical Cracks for Failure Prediction, Journ. Appl. Physics, in press.Google Scholar
  4. 4.
    R. B. Thompson and A. G. Evans, Goals and Objectives of Quantitativ NDE, IEEE Trans. on Sonics and Ultrasonics SU23:292 (1976).CrossRefGoogle Scholar
  5. 5.
    J. W. Goodman “Introduction to Fourier Optics,” McGraw-Hill, New York (1968).Google Scholar
  6. 6.
    M. Born and E. Wolf, “Principles of Optics,” Pergamon Press, New York (1964).Google Scholar
  7. 7.
    H. D. Collins and B. B. Brendon, Acoustical Holography Transverse Wave Scanning Technique for Imaging Flaws in Thick-Walled Pressure Vessels, in “Acoustical Holography”, V. 5, P. S. Green, ed., Plenum Press, N.Y. (1974), p. 175.Google Scholar
  8. 8.
    H. D. Collins, Acoustical Focussed Holographic Scanning Technique for Imaging Inner Bore Radial Defects in Minuteman Miussle Sections, in “Proceedings of 10th Symposium on NDE,” Southwest Research Institute, San Antonio (1975), p. 77.Google Scholar
  9. 9.
    B. P. Hildebrand and B. B. Brenden, “An Introduction to Acoustical Holography,” Plenum Press, N.Y. (1972).Google Scholar
  10. 10.
    R. K. Mueller, Acoustical Holography, Proc. IEEE 59:1319 (1971).CrossRefGoogle Scholar
  11. 11.
    N. Both, ed., “Acoustical Holography”, Vol. 6, Plenum Press, N.Y. (1975), and previous volumes of the series.Google Scholar
  12. 12.
    T. Waugh, G. S. Kino, C. Desilets and J. Fraser, Acoustic Imaging Techniques for Nondestructive Testing, IEEE Trans. on Sonics and Ultrasonics, SU23:313 (1976).ADSCrossRefGoogle Scholar
  13. 13.
    E. L. Caustin, State-Of-The-Art NDE in Quantitative Inspection, in “Proceedings of the Interdisciplinary Workshop for Quantitative Flaw Definition,” D. O. Thompson, ed., AFML-TR-74-238, p. 123 (1974).Google Scholar
  14. 14.
    G. S. Kino, and A. G. Evans, Prospects for Non-Destructive Flaw Detection in Ceramics, Report of the Materials Research Council (1975), ARPA 2341/2.Google Scholar
  15. 15.
    R. K. Elsley, J. M. Richardson, R. B. Thompson, and B. R. Tittmann, Comparison Between Experimental and Computational Results for Elastic Wave Scattering in “Recent Developments in Classical Wave Scattering, Focus on the T-Matrix Approach,” Ohio State Univ., Columbus (1979).Google Scholar
  16. 16.
    B. R. Tittmann, E. R. Cohen, and J. M. Richardson, J. of Acoust. Soc. of America, 63:68 (1978).ADSCrossRefGoogle Scholar
  17. 17.
    B. R. Tittmann, W. L. Morris, and J. M. Richardson, Elastic Wave Scattering at Long Wavelengths, App. Phys. Lett., in press.Google Scholar
  18. 18.
    R. C. Addison, Recent Advances in Imaging, in “Proc. of ARPA/AFML Rev. of Progr. in Quant. NDE,” held Jan. 1976 at Science Center, Rockwell Int. Air Force Report AFML-TR-75-212, p. 273.Google Scholar
  19. 19.
    G. Herrmann and G. S. Kino, Ultrasonic Measurements of Inhomogeneous Stress Fields, in “Proc. of ARPA/AFML Rev. of Progr. in Quant. NDE,” held July 1978 at La Jolla, Calif, Air Force Report AFML-TR-78-205, p. 447.Google Scholar
  20. 20.
    N. Bom, C. T. Lancee, G. Zwieten, F. E. Kloster, and J. Roelendt, Multiscan Echocardiography. I. Technical Description, Circulation, 48:1066 (1973).Google Scholar
  21. 21.
    J. C. Somer, Electronic Sector Scanning for Ultrasonic Diagnosis, Ultrasonics 153 (1968).Google Scholar
  22. 22.
    F. L. Thrustone and O. T. von Ramm, A New Ultrasound Imaging Technique Employing Two-Dimensional Electronic Beam Steering, “Acoustical Holography,” Vol. V, P. S. Green, ed. Plenum Press, New York (1974).Google Scholar
  23. 23.
    G. S. Kino, Acoustic Imaging for Nondestructive Evaluation, Proc. IEEE, 67:510 (1979), also T. M. Waugh and G. S. Kino, Real Time Imaging with Shear Waves and Surface Waves, in “Acoustical Holography,” Vol. 7, Plenum Press, 103 (1977).ADSCrossRefGoogle Scholar
  24. 24.
    G. S. Kino, P. M. Grant, P. D. Corl, and C. S. DeSilets, Digital Synthetic Aperture Acoustic Imaging for NDE, in “Proc. ARPA/AFML Rev. of Progr. in Quant. NDE,” held in July 1978 at La Jolla, Calif, Air Force Report AFML-TR-78-205, p. 459.Google Scholar
  25. 25.
    G. S. Kino, B. T. Khun-Yacub, A. Selfridge, and H. Tuan, Development of Transducers for NDE, in “Proc. ARPA/AFML Rev. of Progress in Quant. NDE” held in July 1979 at La Jolla. Calif, Air Force Report, in press.Google Scholar
  26. 26.
    P. Alais, Real Time Acoustical Imaging with a 256 256 Matrix of Electrostatic Transducers, “Acoustical Holography,” Vol. V, P.S. Green, ed., Plenum Press, New York (1974).Google Scholar
  27. 27.
    M. G. Maginness, J. D. Plummer, and J. D. Meindl, An Acoustic Image Sensor Using a Transmit-Receive Array, “Acoustical Holography,” Vol. V, P. S. Green, ed., Plenum Press, New York (1974).Google Scholar
  28. 28.
    K. Lakin, Acoustic Imaging and Image Processing by Wavefront Reconstruction Techniques, in “Proc. ARPA/AFML Rev. of Progr. in Quant. NDE,” held in July 1979 at La Jolla, Calif., Air Force Report, in press, also Proc. IEEE Ultrasonic Symposium, New Orleans, 1979, in press.Google Scholar
  29. 29.
    B. B. Brenden, A Comparison of Acoustical Holography Methods, “Acoustical Holography,” Vol. I, A. Metherell, H. M. A. El-Sum, L. Larmore, eds., Plenum Press, New York (1969).Google Scholar
  30. 30.
    V. Schmitz, Real Time Ultraschall Holographie, Report 780141-TW of the Traunhofer-Institut fur Zerstorungs freie Prufverfahren, Saarbricken, Germany, p. 38 (1978), also K. J. Langenberg, R. Kiefer, M. Wosnitza, and V. Schmitz, Recent Advances and Techniques in Ultrasonic Holography with Numerical Reconstruction for Improved NDT, unpublished.Google Scholar
  31. 31.
    A. Korpel, Visualization of the Cross Section of a Sound Beam by Bragg Diffraction of Light, Appl. Phys. Lett. 9:425, (1976).ADSCrossRefGoogle Scholar
  32. 32.
    H. Keyani, J. Landry, and G. Wade, Bragg Diffraction Imaging: A Potential Technique for Medical Diagnosis and Material Inspection, Part II. “Acoustical Holography,” Vol. V, P.S. Green, ed., Plenum Press, New York (1974).Google Scholar
  33. 33.
    R. Mezrich, K. F. Etzold, and D. H. R. Vilkomerson, System for Visualizing and Measuring Ultrasonic Wavefronts, R.C.A. Review, 35:483 (1974).ADSGoogle Scholar
  34. 34.
    R. A. Lemons, and C. F. Quate, Acoustic Microscope-Scanning Version, App. Phys. Lett. 24:163 (1974).ADSCrossRefGoogle Scholar
  35. 35.
    A. Korpel, L. W. Kessler, and P. R. Palermo, Acoustic Microscope Operating at 100 MHz, Nature 232:110 (1971).ADSCrossRefGoogle Scholar
  36. 36.
    L. W. Kessler and A. Madeyski, Acoustic Microscopy of Steel, Proc. IEEE, 75 CHO 994-4SU:57 (1975).Google Scholar
  37. 37.
    R. B. Thompson, Introduction to Defect Characterization by Quantitative Ultrasonics, “Proceedings of the ARPA/AFML Review of Progr. in Quant. NDE,” AFML-TR-78-55, p. 15.Google Scholar
  38. 38.
    J. H. Rose and J. A. Krumhans1, A. Technique for Determining Flaw Characteristics from Ultrasonic Scattering Amplitudes, in “Proc. ARPA/AFML Rev. of Prog. in Quant. NDE,” held in July 1979 at La Jolla, Calif. Air Force Report, in press.Google Scholar
  39. 39.
    N. Bleistein and J. K. Cohen, Application of a New Inverse Method to Nondestructive Evaluation, Denv. Research Report, MS-R-7716 (1977).Google Scholar
  40. 40.
    N. Bleistein and J. K. Cohen, Application of Inverse Method to Non-Destructive Evaluation of Flaws, Interdisciplinary Program for Quantitative Flaw Definition, Semi-Annual Report (Rockwell International Science Center, Thousand Oaks, Calif. 1979) p. 112.Google Scholar
  41. 41.
    D. A. Lee, “Mathematical Principles of Data Inversion,” (in preparation).Google Scholar
  42. 42.
    J. K. Cohen, N. Bleistein and R. K. Elsley, Nondestructive Detection of Voids by a High Frequency Inversion Technique, Interdisciplinary Program for Quantitative Flaw Definition, Special Report Fourth Year Effort (Rockwell International Science Center, Thousand Oaks, Calif. 1978) p. 81.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • B. R. Tittmann
    • 1
  1. 1.Rockwell International Science CenterThousand OaksUSA

Personalised recommendations