Skip to main content

Adaptive Array Processing for Acoustic Imaging

  • Chapter

Part of the book series: Acoustical Imaging ((ACIM,volume 9))

Abstract

The need for high resolution acoustic image formation under the constraints imposed by small (≈ 100 wavelengths) apertures, long wavelength radiation, and sparsely sampled discrete apertures is encountered in many applications. Most techniques currently in use require large arrays for resolution and uniform sampling of the array aperture for sidelobe control to yield adequate performance when imaging specular reflectors. This paper examines the applicability of the data-adaptive array processing technique known as the Maximum Likelihood Method to image formation in the undersea environment, where acoustics and acoustic imaging techniques have long been of interest as a result of their utility in probing where electromagnetic radiation will not penetrate. The approach taken is to suppress the usual deterministic outlook wherein the propagation phenomenon is “undone”, and to look at the problem in a statistical sense. The result is an imaging technique that is essentially spatial and temporal spectral density estimation for a space/time random process which is sampled at a small number of discrete spatial locations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wade, G.; Wollman, M.; and Wang, K.; “A Holographic System for use in the Ocean”, Acoustical Holography, Vol. 3; Plenum, Press, 1971.

    Google Scholar 

  2. Wollman, M.; Wade, G.; “Experimental Results from an Underwater Acoustical Holographic System”, Acoustical Holography, Vol. 5; Plenum Press, 1973.

    Google Scholar 

  3. Flesher, G.T.; Wollman, M.; and Wade, G.; “Multichannel Underwater Acoustic Holographic System”, IEEE Ocean’ 75, IEEE Press, 1975.

    Google Scholar 

  4. Duckworth, G.L.; Adaptive Array Processing for High Resolution Acoustic Imaging; Masters Thesis in the Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, September 1979.

    Google Scholar 

  5. Baggeroer, A.B.; Space/Time Random Processes and Optimum Array Processing; Naval Undersea Center document NVD TD 506, 1976.

    Google Scholar 

  6. Capon, J.; Greenfield, R.J.; Kolker, R.J.; “Multidimensional Maximum Likelihood Processing of a Large Aperture Seismic Array”, Proceedings of the IEEE, Vol. 55, #2, February, 1967.

    Google Scholar 

  7. Capon, J.; “High Resolution Frequency Wavenumber Analysis”, Proceedings of the IEEE, Vol. 57, #8, August, 1969.

    Google Scholar 

  8. Capon, J.; Goodman, N.R.; “Probability Distributions for Estimators of the Frequency Wavenumber Spectrum”, Proceedings of the IEEE, Vol. 58, pp. 1785–86, October, 1970.

    Article  Google Scholar 

  9. Duckworth, G.L.; “Array Processing for a Distributed Sensor Network Node”, (A Lincoln Laboratories Technical note to be published).

    Google Scholar 

  10. Markel, J.D.: “FFT Pruning”, IEEE Transactions on Audio and Electroacoustics, Vol. AV-19, #4, December, 1971.

    Google Scholar 

  11. Strang, G.; Linear Algebra and its Applications, Academic Press, N.Y., 1976.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Duckworth, G.L. (1980). Adaptive Array Processing for Acoustic Imaging. In: Wang, K.Y. (eds) Acoustical Imaging. Acoustical Imaging, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3755-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3755-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3757-7

  • Online ISBN: 978-1-4684-3755-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics