Skip to main content

The Indicator Extraction Technique. A Method for Studying the Blood-Retinal Barriers

  • Chapter
The Cerebral Microvasculature

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 131))

Abstract

In the last decade, the properties of the blood-brain barrier have been the object of many investigations. The eye possesses a similar barrier which is involved in regulating the environment of the retina, but as yet, little is known about its properties. Previous investigations have demonstrated that the blood-retinal barrier excludes large molecules, such as horseradish peroxidase (1,2) and microperoxidase (3) and even the low molecular weight compound, fluorescein (4) from entering the retinal tissue. If the entry of water-soluble substances into the retina by free diffusion is hindered, one can anticipate that there are carrier mechanisms for the transport of essential substrates and metabolites across the blood-retinal barrier, similar to those in the brain. In man, as well as in cats and pigs, the retina has a dual vascular supply; the inner parts are nourished by the retinal vessels, whereas the outer parts are supplied by the choroidal circulation. Thus, in these species, the blood- retinal barrier has two interfaces. The endothelium of the retinal capillaries is continuous and lacks fenestrations, similar to that of the cerebral capillaries. Adjacent cells are attached to each other by tight junctions, which constitute the main barrier to diffusion through the capillary wall. In contrast, the choroidal capillary wall is thin and fenestrated, each fenestration being closed by a thin membrane. These capillaries form a dense network, the choriocapillaris, that is restricted to a single plane and separated from the photoreceptors by the retinal pigment epithelium. This epithelium constitutes the other part of the blood-retinal barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shiose V: Electron microscopic studies on blood-retinal and blood-aquous barriers. Jap J Ophthal 14: 73–87, 1970.

    Google Scholar 

  2. Peyman GA, Bok D: Peroxidase diffusion in the normal and laser-coagulated primate retina. Invest Ophthal 11: 35–45, 1972.

    CAS  PubMed  Google Scholar 

  3. Smith RS, Rudt LA: Ocular vascular and epithelial barriers to microperoxiade. Invest Ophthal 14: 556–560, 1975.

    CAS  PubMed  Google Scholar 

  4. Grayson MC, Laties AM: Ocular localization of sodium fluorescein. Arch Ophthal 85: 600–609, 1971.

    Article  CAS  PubMed  Google Scholar 

  5. Aim A: Transport of hexoses through the blood-retinal barrier in vivo. Invest Ophthal (Suppl) (ARVO abstracts) p 160, 1979.

    Google Scholar 

  6. Oldendorf WH: Measurements of brain uptake of radiolabelled substances using a tritiated internal standard. Brain Res 24: 372–376, 1970.

    Article  CAS  PubMed  Google Scholar 

  7. Oldendorf WH: Brain uptake of radiolabelled aminoacids, amines and nexoses after arterial injection. Am J Physiol 221: 1629–1639, 1971.

    CAS  PubMed  Google Scholar 

  8. Crone C: The permeability of capillaries in various organs as determined by use of the “indicator diffusion” method. Acta Physiol Scand 58: 292–305, 1963.

    Article  CAS  PubMed  Google Scholar 

  9. Tornquist P: Capillary permeability in cat choroid, studied with the single injection technique (I). 9th Europ Conf Microcirculation, Antwerp, 1976. Bibl Anat 16: 51–55, 1977.

    CAS  Google Scholar 

  10. Tornquist P: Capillary permeability in cat choroid, studied in the single injection technique (II). Acta Physiol Scand 106: 425–430, 1979.

    Article  CAS  PubMed  Google Scholar 

  11. Tornquist P, Aim A, Bill A: Studies on ocular blood flow and retinal capillary permeability to sodium in pigs. Acta Physiol Scand (In press).

    Google Scholar 

  12. Renkin EM: Separation of solutes in washout of cylindrical tubes. Fed Proc 18: 127, 1959.

    Google Scholar 

  13. Lassen NA, Trap-Jensen J, Alexander SC, Olesen J, Paulson OB: Blood-brain barrier studies in man using the double- indicator method. Am J Physiol 220: 1627–1633, 1971.

    CAS  PubMed  Google Scholar 

  14. Yudilevich DL, DeRose N: Blood-brain transfer of glucose and other molecules measured by rapid indicator dilution. Am J Physiol 220: 841–846, 1971.

    CAS  PubMed  Google Scholar 

  15. Trap-Jensen J, Lassen NA: Capillary permeability for smaller hydrophilic tracers in exercising skeletal muscle in normal man and in patients with long-term diabetes mellitus. In, Crone C and Lassen NA (eds): Capillary Permeability, Copenhagen, Munksgaard, 1970, pp 135–152.

    Google Scholar 

  16. Renkin EM: Transport pathways through capillary endothelium. Microvasc Res 15: 123–135, 1978.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Törnquist, P. (1980). The Indicator Extraction Technique. A Method for Studying the Blood-Retinal Barriers. In: Eisenberg, H.M., Suddith, R.L. (eds) The Cerebral Microvasculature. Advances in Experimental Medicine and Biology, vol 131. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3752-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3752-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3754-6

  • Online ISBN: 978-1-4684-3752-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics