Advertisement

Changes in Blood-Brain Transfer Parameters Induced by Hyperosmolar Intracarotid Infusion and by Metastatic Tumor Growth

  • R. G. Blasberg
  • J. Gazendam
  • C. S. Patlak
  • W. S. Shapiro
  • J. D. Fenstermacher
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 131)

Abstract

The transport of solutes and water between blood and brain tissue depends on such things as the rate of tissue blood flow, the permeabilities of the capillary and cellular membranes, and the sizes of the various tissue distribution spaces. In some pathologic situations, the primary cause of the lesion is the interruption of the normal operation of one or more of these transport components, for example, local tissue blood flow in stroke. In other conditions, the presence of the initial pathologic disturbance subsequently affects the movements of materials within the system, for instance, the development of edema in and around a tumor site.

Keywords

Metastatic Brain Tumor Tissue Blood Flow Transfer Constant Amino Isobutyric Acid Intracarotid Infusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rapoport S, Ohno K, Fredericks W, et als Regional cerebrovascular permeability to 14C sucrose after osmotic opening of the blood brain barrier. Brain Res 150, 653–657, 1978.CrossRefPubMedGoogle Scholar
  2. 2.
    Ushio Y, Chernik N, Shapiro W, et als Metastatic tumor of the brain. Development of an experimental model. Ann Neurol 2, 20–29, 1977.CrossRefPubMedGoogle Scholar
  3. 3.
    Reivich M, Jehle J, Sokoloff L, et als Measurements of regional cerebral blood flow with C14-antipyrine in awake cats. J Appl Physiol 27, 296–300, 1969.PubMedGoogle Scholar
  4. 4.
    Sokoloff L, Revich M, Kennedy K, et als The [14C] deoxyglucose method for the measurement of local cerebral glucose utilizations theory, procedure, and normal values of conscious and anesthetized albino rat. J Neurochem 28, 897–916, 1977.CrossRefPubMedGoogle Scholar
  5. 5.
    Sakurada O, Kennedy C, Jehle J, et als Measurement of local cerebral blood flow with iodo [14C] antipyrine. Am J Physiol 3, SH59–H66, 1978.Google Scholar
  6. 6.
    Goochee C, Rasband W, Sokoloff Ls Computerized densitometry and color coding of [14C] deoxyglucose autoradiographs. Ann Neurol, in press.Google Scholar
  7. 7.
    Kety SSs The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3, 1–41, 1951.PubMedGoogle Scholar
  8. 8.
    Kety SS Measurements of local blood flow by the exchange of an inert, diffusible substance. Methods Med Res 8, 228–236, 1960.Google Scholar
  9. 9.
    Blasberg RG, Patlak CS, Jehle JW, et als An autoradiographic technique to measure the permeability of normal and abnormal brain capillaries. Neurology 28, 363, 1978.CrossRefGoogle Scholar
  10. 10.
    Ohno K, Pettigrew K, Rapoport Ss Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat. Am J Physiol 235SH299–H307, 1978.Google Scholar
  11. 11.
    Gazendam J, Blasberg RG, Patlak CS. An autoradiographic study of capillary permeability during hyper-osmotic opening. Proceedings of the Fourth International Symposium on Intracranial Pressure, New York, Springer-Verlag, in press.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • R. G. Blasberg
    • 1
    • 2
  • J. Gazendam
    • 1
    • 2
  • C. S. Patlak
    • 1
    • 2
  • W. S. Shapiro
    • 1
    • 2
  • J. D. Fenstermacher
    • 1
    • 2
  1. 1.National Institutes of HealthBethesdaUSA
  2. 2.Sloan-Kettering InstituteNew YorkUSA

Personalised recommendations