Endothelial and Astrocytic Cell Membranes in Relation to the Composition of Cerebral Extracellular Fluid

  • J. J. Anders
  • K. Dorovini-Zis
  • M. W. Brightman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 131)


In this chapter we review experiments performed to investigate the ultrastructure of cerebral microvessels and adjacent glial cells. The purpose of these experiments was to study: 1) the pathways of solute movement after infusion of hyperosmotic fluids, and 2) the specialized structures, called assemblies, within astrocytic membranes. The increased number of assemblies found near microvessels and in the glia limitans might be involved in the regulation of the composition of cerebral extracellular fluid.


Tight Junction Perivascular Space Astrocytic Process Human Spinal Cord Glia Limitans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chiueh, CC, Sun CL, Kopin, IJ, et al: Entry of [%] norepinephrine, albumin and Evans blue from blood into brain following unilateral osmotic opening of the blood-brain barrier. Brain Res 145: 291–401, 1978.CrossRefPubMedGoogle Scholar
  2. 2.
    Brightman, MW, Hori, M, Rapoport, SI, et al: Osmotic opening of tight junctions in cerebral endothelium. J Comp Neurol 152: 317–326, 1973.CrossRefPubMedGoogle Scholar
  3. 3.
    Nagy, Z, Pappius, HM, Mathieson, F, et al: Opening of tight junctions in cerebral endothelium, a. Effect of hyperosmotic mannitol infused through the internal carotid artery. J Comp Neurol 185: 569–578, 1979.CrossRefPubMedGoogle Scholar
  4. 4.
    Rapoport, SI: Blood brain Barrier in Physiology and Medicine. New York, Raven Press, 1976, pp 146–148.Google Scholar
  5. 5.
    Brightman, MW, Robinson, JS: Some attempts to open the blood-brain barrier to protein. In, McLaurin RL (ed): Head Injuries, New York, Grune & Stratton, Inc, 1976, pp 107–113.Google Scholar
  6. 6.
    Nagy, Z, Mathieson, G, Hiittner, I: Opening of tight junctions in cerebral endothelium, b. Effect of pressure-pulse induced acute arterial hypertension. J Comp Neurol 185: 579–586, 1979.CrossRefPubMedGoogle Scholar
  7. 7.
    Van Deurs, B: Observations on the blood-brain barrier in hypertensive rats, with particular reference to phagocytic pericytes. J Ultrastruct Res 56: 65–77, 1976.CrossRefPubMedGoogle Scholar
  8. 8.
    Nag, S, Robertson, DM, Dinsdale, HB: Cerebral cortical changes in acute experimental hypertension. An ultrastructural study. Lab Invest 36: 150–160, 1977.PubMedGoogle Scholar
  9. 9.
    Westergaard E, van Deurs B, Brøndsted, HE: Increased vesicular transfer of horseradish peroxidase across cerebral endothelium evoked by acute hypertension. Acta Neuropath (Berlin) 37: 141–152, 1977.CrossRefGoogle Scholar
  10. 10.
    Petito, CK, Schaefer, JA, Plum, F: Ultrastructural characteristics of the brain and blood-brain barrier in experimental Scizures. Brain Res 127: 251–267, 1977.CrossRefPubMedGoogle Scholar
  11. 11.
    Rapoport, SI, Hori, M, Klatzo, I: Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am J Physiol 223: 323–331, 1972.PubMedGoogle Scholar
  12. 12.
    Harned, HS, Owen, BB: The Physical Chemistry of Electrolytic Solutions, New York, Reinhold Publishers, 1958, pp 164, 700, 702.Google Scholar
  13. 13.
    Machen, T, Erlij, D, Wooding, FBP: Permeable junctional complexes. The movement of lanthanum across rabbit gall bladder and intestine. J Cell Biol 54: 302–312, 1972.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Whittembury, G, Rawlins, FA: Evidence of a paracellular pathway for ion flow in the kidney proximal tubule: Electronmicroscopic demonstration of lanthanum precipitate in the tight junction. Pflugers Arch ges Physiol 330: 302–309, 1971.CrossRefGoogle Scholar
  15. 15.
    Castel, M, Sahar, A, Erlij, D: The movement of lanthanum across diffusion barriers in the choroid plexus of the cat. Brain Res 67: 178–184, 1974.CrossRefPubMedGoogle Scholar
  16. 16.
    Bouldin, TW, Kirgman, MR: Differential permeability of cerebral capillary and choroid plexus to lanthanum ion. Brain Res 99: 444–448, 1975.CrossRefPubMedGoogle Scholar
  17. 17.
    Kuffler, SW, Nicholls, JG: From Neuron to Brain, Massachusetts, Sinauer Assoc, 1976, p 488.Google Scholar
  18. 18.
    Landis, DMD, Reese, TS: Arrays of particles in freeze-fractured astrocytic membranes. J Cell Biol 60: 316–320, 1974.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Reale, E, Luciano L: Introduction to freeze-fracture method in retinal research. Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 192: 73–87, 1974.CrossRefPubMedGoogle Scholar
  20. 20.
    Brightman, MW, Prescott, L, Reese, TS: Intercellular junctions of special ependyma. In, Knigge KM, Scott DE, Kobayashi H, Ishii S (eds): Brain-Endocrine Interaction II. The Ventricular System. Basel, Karger, 1975, pp 146–165.Google Scholar
  21. 21.
    Privat, A: The ependyma and subependymal layer of the young rat. A new contribution with freeze-fracture. Neuroscience 2: 447–457, 1977.CrossRefPubMedGoogle Scholar
  22. 22.
    Pannese, E, Luciano, L, Iurato, S, et al: Intercellular junctions and other membrane specializations in developing spinal ganglia: A freeze-fracture study. J Ultrastruct Res 60: 169–180, 1977.CrossRefPubMedGoogle Scholar
  23. 23.
    Elfvin, LG, Forsman, C: The ultrastructure of junctions between satellite cells in mammalian sympathetic ganglia as revealed by freeze-etching. J Ultrastruc Res 63: 261–274, 1978.CrossRefGoogle Scholar
  24. 24.
    Kreutziger, GO: Freeze-etching of intercellular junctions of mouse liver. In: Proceedings of the 26th Meeting of the Electron Microscope Society of America, Baton Rouge, Claitors Publishing Division, 1968, p 234.Google Scholar
  25. 25.
    Staehelin, LA: Three types of gap junctions interconnecting intestinal epithelial cells visualized by freeze-etching. Proc Nat Acad Sci 69: 1318–1321, 1972.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Inoue, S, Hogg, JC: Freeze-etch study of the tracheal epithelium of normal guinea pigs with particular reference to intercellular junctions. J Ultrastruct Res 61: 89–99, 1977.CrossRefPubMedGoogle Scholar
  27. 27.
    Bordi, C, Perrelet, A: Orthogonal arrays of particles in plasma membranes of the gastric parietal cell. Anat Ree 192: 297–304, 1978.CrossRefGoogle Scholar
  28. 28.
    Humbert, F, Pricam, C, Perrelet, A, et al: Specific plasma membrane differentiations in the cells of the kidney collecting tubule. J Ultrastruct Res 52: 13–20, 1975.CrossRefPubMedGoogle Scholar
  29. 29.
    Heuser, JE, Reese, TS, Landis, DMD: Functional changes in frog neuromuscular junctions studied with freeze-fracture. J Neurocyto13: 109–131, 1974.Google Scholar
  30. 30.
    Smith, DS, Baerwald, RJ, Hart, MA: The distribution of orthogonal assemblies and other intercalated particles in frog sartorius and rabbit sacrospinalis muscle. Tissue and Cell 7: 369–382, 1975.CrossRefPubMedGoogle Scholar
  31. 31.
    Ellisman, MH, Rash, JE: Studies of excitable membranes. III. Freeze-fracture examination of the membrane specializations at the neuromuscular junction and in the nonjunctional sarcolemma after denervation. Brain Res 137: 197–206, 1977.CrossRefPubMedGoogle Scholar
  32. 32.
    Anders, JJ, Pagnanelli, DM: The protein nature and arrangement of intramembranous particle assemblies in normal and reactive astrocytes. Anat. Ree 193: 470, 1979.Google Scholar
  33. 33.
    Anders, JJ, Brightman, MW: Assemblies of particles in the cell membranes of developing, mature and reactive astrocytes. J Neurocytol, In press.Google Scholar
  34. 34.
    Rosenstein, JM, Brightman, MW: Intact cerebral ventricle as a site for tissue transplantation. Nature (Lond) 275: 83–85, 1978.CrossRefGoogle Scholar
  35. 35.
    Wolff, J: Beiträge zur Ultrastruktur der Kapillaren in der normalen Grosshirnrinde. Z Zellforsch 60: 409–431, 1963.CrossRefPubMedGoogle Scholar
  36. 36.
    Bodenheimer, TS, Brightman, MW: A blood-brain barrier to peroxidase in capillaries surrounded by perivascular spaces. Am J Anat 122: 249–268, 1968.CrossRefPubMedGoogle Scholar
  37. 37.
    Lange, W, Halata, Z: Die ultrastruktur der kapillaren der kleinhirnrinde und das perikapillare. Gewebe Z Zellforsch 128: 83–99, 1972.CrossRefGoogle Scholar
  38. 38.
    Wolff, J, Nemecek, St: Uber kollagenhaltige perivaskuläre Räume an Kappillaren in der Medulla Oblongata des Rhesusaffen. Experientia 24: 930, 1968.CrossRefPubMedGoogle Scholar
  39. 39.
    Drommer, W: Kapillaren mit kollagenhaltigen perivaskulären Räumen in der Medulla Oblongata und in Rukenmark des Schweines. Naturwissen 56: 141, 1969.CrossRefGoogle Scholar
  40. 40.
    Tigges, M, Tigges, J: Extracellular perivascular connective tissue space in the medial terminal nucleus of the accessory optic system in rats. Z Zellforsch 125: 289–294, 1972.CrossRefPubMedGoogle Scholar
  41. 41.
    Stensaas, LJ, Stensaas, SS: Astrocytic neuroglial cells and oligodendrocytes and microgliacytes in spinal cord of the toad. II. Electron microscopy. Z Zellforsch 86: 184–213, 1968.CrossRefPubMedGoogle Scholar
  42. 42.
    Drommer, W, Schulz, L-Cl: Feinstruktur der normalen Kappillaren und Venulen im Ruckenmark des Schweines. Anat Anz 128: 232–247, 1971.PubMedGoogle Scholar
  43. 43.
    Cervos-Navarro, J, Ferszt, R: Connective tissue in pericapillary spaces of the human spinal cord. Acta Neuropath 24: 178–183, 1973.CrossRefPubMedGoogle Scholar
  44. 44.
    Ferszt, R, Cervos-Navarro, J, Sasaki, S: Pericapillary spaces in the human spinal cord. In, Cervos-Navarro J (ed): Pathology of Cerebral Microcirculation, Berlin, Walter de Gruyter and Co, 1974, pp 57–66.Google Scholar
  45. 45.
    Bondareff, W, McClone, DG: The extreme glial limiting membrane in Macada: Ultrastrueture of a laminated glioepithelium. Am J Anat 136: 277–296, 1973.CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. J. Anders
    • 1
  • K. Dorovini-Zis
    • 1
  • M. W. Brightman
    • 1
  1. 1.Section on Neurocytology, Laboratory of Neuropathology and Neuroanatomical Sciences, National Institute of Neurological and Communicative Disorders and StrokeNational Institutes of HealthBethesdaUSA

Personalised recommendations