Advertisement

Central Adrenergic Regulation of Cerebral Microvascular Permeability and Blood Flow: Pharmacologic Evidence

  • S. H. Preskorn
  • B. K. Hartman
  • M. E. Raichle
  • L. W. Swanson
  • H. B. Clark
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 131)

Abstract

Evidence from anatomic and physiologic studies has led to the development of a central adrenergic neurohumoral hypothesis. This hypothesis proposes that the central adrenergic system is part of an intra-axial autonomic system distinct from the peripheral sympathetic system, but having analogous functions. One specific function predicted by this concept is modulation of cerebral microvascular permeability and flow.

Keywords

Systemic Arterial Pressure Tritiated Water Vascular Compartment Reference Tracer Adrenergic Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hartman B: The innervation of cerebral blood vessels by central adrenergic neurons. In, Usdin E and Snyder S (eds): Frontiers of Catecholamine Research, New York, Pergamon Press, 1973, pp 91–96.Google Scholar
  2. 2.
    Edvinsson L, Lindvall O, Nielsen K, et als Are brain vessels innervated also by central (non-sympathetic) adrenergic neurons? Brain Res 63: 496–499, 1973.CrossRefPubMedGoogle Scholar
  3. 3.
    Swanson L, Connelly M, Hartman B: Ultrastructural evidence for the central monoaminergic innervation of blood vessels in the paraventricular nucleus of the hypothalamus, Brain Res 136: 166–173, 1977.CrossRefPubMedGoogle Scholar
  4. 4.
    Raichle M, Eichling J, Grubb R, et al: Central noradrenergic regulation of brain microcirculation. In, Pappius H, and Feindel W (eds): Dynamics of Brain Edema, New York, Springer-Verlag, 1976, pp 11–17.Google Scholar
  5. 5.
    Raichle M, Hartman B, Eichling J, et al: Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proc Natl Acad Sci 72: 3726–3730, 1975.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Preskorn S, Hartman B: The effect of tricyclic antidepressants on cerebral fluid dynamics. Biol Psychiat 14: 235–250, 1979.PubMedGoogle Scholar
  7. 7.
    Preskorn S, Hartman B, Raichle M: The effects of dibenzazepines on cerebral capillary permeability in the rats in vivo. J Pharmacol Exp Therap, In press.Google Scholar
  8. 8.
    Preskorn S, Hertman B, Raichle M, et al: Amitriptyline-induced alterations in cerebral capillary permeability. Neurosci Abst 4: 500, 1978.Google Scholar
  9. 9.
    Olendorf W: Measurement of brain uptake of radio-labeled substances using a tritiated water internal standard. Brain Res 24: 372–376, 1970.CrossRefGoogle Scholar
  10. 10.
    Raichel M, Eichling J, Straatman M, et al: Blood-brain permeability of lie -labeled alcohol and 150 -labeled water. Am J Physiol 230: 543–552, 1976.Google Scholar
  11. 11.
    Ross S, Renyi A: Inhibition of the uptake of tritiated catecholamines by antidepressants and related agents. Europ J Pharmacol 2: 181–186, 1967.CrossRefGoogle Scholar
  12. 12.
    Alpers H, Hinwich H: An in vitro study of the effects of tricyclic antidepressant drugs on the accumulation of 14C-serotonin by rabbit brain. Biol Psychiat 1: 81–85, 1969.PubMedGoogle Scholar
  13. 13.
    Snyder S, Yamamura H: Antidepressants and the muscarinic acetylcholine receptor. Arch Gen Psych 34: 236–239, 1977.CrossRefGoogle Scholar
  14. 14.
    U’Prichard D, Greenberg D, Sheehan P, et al: Tricyclic antidepressants: Therapeutic properties and affinity for alpha noradrenergic receptor binding sites in the brain. Science 199: 197–198, 1977.CrossRefGoogle Scholar
  15. 15.
    Elonen E: Correlation of the cardiotoxicity of the tricyclic antidepressants to their membrane effects. Med Biol 52: 415–423, 1974.PubMedGoogle Scholar
  16. 16.
    Crews F, Smith C: Presynaptic alpha-receptor subsensitivity after long-term antidepressant treatment. Science 202: 322–324, 1978.CrossRefPubMedGoogle Scholar
  17. 17.
    Svensson T, Usdin T: Feedback inhibition of brain noradrenaline neurons by tricyclic antidepressants: Alpha- receptor mediation. Science 202: 1089–1091, 1978.CrossRefPubMedGoogle Scholar
  18. 18.
    Preskorn S, Hartman B, Raichle M: Long term antidepressant treatment: Alterations in cerebral capillary permeability, In press.Google Scholar
  19. 19.
    Carlsson A: Structural specificity for inhibition of 14C-5-hydroxytryptomine uptake by cerebral slices. J Pharm Pharmac 22: 729–732, 1970.CrossRefGoogle Scholar
  20. 20.
    Preskorn S, Biggs J: Use of tricyclic antidepressant blood levels. N Engl J Med 298: 166, 1978.PubMedGoogle Scholar
  21. 21.
    Ziegler V, Co B, Taylor J: Amitriptyline plasma levels and therapeutic response. Clin Pharmacol Ther 19:795– 801, 1977.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • S. H. Preskorn
    • 1
    • 2
    • 3
    • 4
    • 5
  • B. K. Hartman
    • 1
    • 2
    • 3
    • 4
    • 5
  • M. E. Raichle
    • 1
    • 2
    • 3
    • 4
    • 5
  • L. W. Swanson
    • 1
    • 2
    • 3
    • 4
    • 5
  • H. B. Clark
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Department of PsychiatryWashington University School of MedicineSt. LouisUSA
  2. 2.Department of NeurobiologyWashington University School of MedicineSt. LouisUSA
  3. 3.Department of AnatomyWashington University School of MedicineSt. LouisUSA
  4. 4.Department of NeurologyWashington University School of MedicineSt. LouisUSA
  5. 5.Department of Radiology-Division of Radiation SciencesWashington University School of MedicineSt. LouisUSA

Personalised recommendations