Approaches to Stabilization of Hydrogenase and Nitrogenase Against Oxygen Inactivation

  • Alexander M. Klibanov
  • Nathan O. Kaplan
  • Martin D. Kamen


In the present energy crisis, it is obvious that non-conventional, alternative sources of energy must be explored. Solar energy seems a natural choice. Since green plants and photosynthetic bacteria developed systems to utilize this energy eons ago, it is logical to seek solutions to the energy crisis based on the mechanisms they employ. Thus, an early scheme suggested and demonstrated to be feasible (1) involved a scheme for “artificial” solar energy bioconversion, which consisted of two key elements, plant chloroplasts and bacterial hydrogenase. Under illumination, chloroplasts decompose water to evolve oxygen and generate the reduced electron carrier, ferredoxin. In the subsequent dark reaction, hydrogenase oxidizes reduced ferredoxin to evolve hydrogen. As a result of such a biophotolysis of water H2 gas—an ideal fuel—is produced.


Free Enzyme Sulfosalicylic Acid Clostridium Pasteurianum Particulate Enzyme Solar Energy Research Institute 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benemann, J.R., Berenson, J.A., Kaplan, N.O. & Kamen, M.D. Proc. Natl. Acad. Sci. USA70: 2317, 1973.CrossRefGoogle Scholar
  2. 2.
    Weaver, P., Lien, S. & Seibert, M. “Photobiological Production of Hydrogen — A Solar Energy Conversion Option”, Solar Energy Research Institute, Colorado, 1979.Google Scholar
  3. 3.
    Krasna, A.I. Enzyme Microb. Technol.1: 165, 1979.CrossRefGoogle Scholar
  4. 4.
    Klibanov, A.M., Kaplan, N.O. & Kamen, M.D. Proc. Natl. Acad. Sci. USA75: 3640, 1978.CrossRefGoogle Scholar
  5. 5.
    Battino, R. & Clever, H.L. Chem. Revs.66: 395, 1966.CrossRefGoogle Scholar
  6. 6.
    Linke, W.F. & Seidell, A. “Solubilities: Inorganic and Metal-Organic Compounds”, (D. van Nostrand, ed.) New York, Vols. 1 (1958) and 2 (1965).Google Scholar
  7. 7.
    Klibanov, A. M., Kaplan, N.O. & Kamen, M.D. Biochim. Biophys. Acta547; 411, 1979.CrossRefGoogle Scholar
  8. 8.
    Petering, D., Fee, J.A. & Palmer, G. J. Biol. Chem.246: 643, 1971.Google Scholar
  9. 9.
    Jocelyn, P.C. “Biochemistry of the SH Groups”, Academic Press, New York-London.Google Scholar
  10. 10.
    Postgate, J.R. in “The Biology of Nitrogen Fixation” (A. Quispel, ed.) North-Holland Publishing Co., Amsterdam, 1974, p. 663.Google Scholar
  11. 11.
    Drozd, J. & Postgate, J.R. J. Gen. Microbiol.63: 63, 1970.Google Scholar
  12. 12.
    Scherings, G. Haaker, H. & Veeger, C. Eur. J. Biochem.77: 621, 1977.CrossRefGoogle Scholar
  13. 13.
    Klibanov, A.M. & Weare, N.M. in “From Cyclotrons to Cytochromes” (N. O. Kaplan and A. B. Robinson, eds.) Academic Press, New York, 1980, in press.Google Scholar
  14. 14.
    Bulen, W. A., Burns, R.C. & Le Comte, J.R. Proc. Natl. Acad. Sci. USA53: 532, 1965.CrossRefGoogle Scholar
  15. 15.
    Yates, M.G. Eur. J. Biochem.29: 386, 1962.CrossRefGoogle Scholar
  16. 16.
    Klibanov, A.M. Anal. Biochem.93: 1, 1979.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Alexander M. Klibanov
    • 1
  • Nathan O. Kaplan
    • 2
  • Martin D. Kamen
    • 2
  1. 1.Department of Nutrition and Food ScienceMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of ChemistryUniversity of California at San DiegoLaJollaUSA

Personalised recommendations