Advertisement

Immobilized Thylakoids and Chromatophores: Hydrogen Production and ATP Regeneration

  • V. Larreta Garde
  • M. F. Cocquempot
  • J. N. Barbotin
  • B. Thomasset
  • D. Thomas

Abstract

The direct bioconversion of solar energy on a continuous basis can be used to produce high energy compounds such as ATP and hydrogen gas. Two kinds of organelles can be used for the direct bioconversion of solar energy: chloroplast membranes (thylakoids) and bacterial chromatophores. Chloroplasts are able to perform photolysis of water but have no hydrogenase activity. Photo-synthetic bacteria exhibit hydrogenase activity but are not able to perform photolysis of water. The association of thylakoids with bacterial hydrogenase gives rise to the production of hydrogen gas (1,2). In all the possible processes the key point and limiting step is the stability of the chloroplast membrane functions (1,4). Several authors have tried to stabilize the in vitro photochemical activity of thylakoids: using microencapsulation (5), entrapment within Polyacrylamide gels (6,7), within polyvinyl alcohols (8), onto diethylaminoethyl cellulose (9) or crosslinking with glutar-aldehyde (10). Recently, Papageorgiou reported effects of glutar-aldehyde action on photosynthetic membranes (11). A part of the present paper deals with the immobilization of lettuce thylakoids by glutaraldehyde action at subzero temperature in the presence of albumin.

Keywords

Hydrogen Production Activity Yield Photosynthetic Bacterium Chloroplast Membrane Subzero Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    KRAMPITZ, L.O. An inquiry into Biological Energy Conversion (A. HOLLANDER et al, eds.) The University of Tennessee, Knoxville, TN, 1972.Google Scholar
  2. 2.
    BENEMANN, J.R., BERENSON, J.A., KAPLAN, N.O. & KAMEN, M.D. Proc. Nat. Acad. Sci. 70: 2317–2320, 1973.CrossRefGoogle Scholar
  3. 3.
    GIBBS, M., HOLLAENDER, A., KOK, B. KRAMPITZ, L. O. & SAN PIETRO, A. “Proceeding of the workshop on biosolar conversion” Indiana Univ., MD, 1973.Google Scholar
  4. 4.
    RAO, K.K., ROSA, L. & HALL, D.O. Biochem. Biophys. Res. Coram. 68: 21–28, 1976.CrossRefGoogle Scholar
  5. 5.
    KITAJIMA, M. & BUTLER, W.L. Plant. Physiol. 57: 746–750,1976.CrossRefGoogle Scholar
  6. 6.
    OCHIAI, H., SHIBATA, H., MATSUO, T., HASHINOKUCHI, K., & YUKAWA M. Agric. Biol. Chem. 41 (4); 721–722, 1977.CrossRefGoogle Scholar
  7. 7.
    KARUBE, I., AIZAWA, K., IKEDA, S. & SUZUKI, S. Biotechnol. Bioeng. 21: 253–260, 1979.CrossRefGoogle Scholar
  8. 8.
    OCHIAI, H., SHIBATA, H., MATSUO, T., HASHINOKUCHI, K. & INAMURA I. Agric. Biol. Chem. 42 (3): 683–685, 1978.CrossRefGoogle Scholar
  9. 9.
    SHIOI, Y & SASA, T. FEBS Letters 101: 311–315, 1979.CrossRefGoogle Scholar
  10. 10.
    KRENDELEVA, T. E., KUKARSKIKH, G.P., NIZOVSKAYA, N.U., PASHCHENKO, V.Z., TIMOFEEV, K.N., TULBU, G.U. & KHITROV, Y.A. Biokhimiya 42: 1965–1972, 1977.Google Scholar
  11. 11.
    PAPAGEORGIOU, G.C. Topics in Photosynthesis 3: 211–241, 1979.Google Scholar
  12. 12.
    GEST, H. Adv. Microbiol. Physiol. 7: 243–282, 1972.CrossRefGoogle Scholar
  13. 13.
    MARSCHALL, D.L. Biotechnol. Bioen. 15: 447–453, 1973.CrossRefGoogle Scholar
  14. 14.
    GARDNER, C.R., COLTON, C.K., LANGER, R.S., HAMILTON, B.K., ARCHER, M.C., & WHITESIDES, G.M. Enzyme Engineering 2: 209–222, 1974.Google Scholar
  15. 15.
    FAN, I.JI.; CHIEN, Y.C. & CHIANG, I.H. Scientia Sinica 21: 5, 663–668, 1978.Google Scholar
  16. 16.
    PACE, G.N., YANG, H., TANNENBAUM, S.R. & ARCHER, M.C. Biotechnol. Bioeng. 18, 1413–1423, 1978.CrossRefGoogle Scholar
  17. 17.
    SEIBERT, M., CHANCE, B. & DE VAULT, D. Arch. Biochem. Biophys. 146: 611–617, 1970.CrossRefGoogle Scholar
  18. 18.
    BENNET, M.A. & WEETALL, H. H J. Solid-phase Biochem. 1: 137–142, 1976.Google Scholar
  19. 19.
    YANG, H., LEUNG, K.H. & ARCHER, M.C. Biotechnol. Bioeng. 18: 1425–2432, 1976.CrossRefGoogle Scholar
  20. 20.
    EPEL, B.L. & NEUMANN, J. Biochem. Biophys. Acta 325: 520–529, 1973.CrossRefGoogle Scholar
  21. 21.
    WEAVER, P.F., WALL, J.D. & GEST, H. Arch. Microbiol. 105: 267–271, 1975.CrossRefGoogle Scholar
  22. 22.
    MILLER, P. & GEST, H. J. Bacteriol. 129: 724–731, 1977.Google Scholar
  23. 23.
    BROUN, G., THOMAS, D., GELLF, G. DOMURADO, D., BERJONNEAU, A.M. & GUILLON C. Biotechnol. Bioeng. 15: 359–375, 1973.CrossRefGoogle Scholar
  24. 24.
    PETRE, D., NOEL, C. & THOMAS, D. Biotechnol. Bioeng. 20: 127–129, 1978.CrossRefGoogle Scholar
  25. 25.
    KULANDAIVELU, G. & HALL, D.O. Z. Naturforsch 31c; 452–455, 1976.Google Scholar
  26. 26.
    FRY, I., PAPAGEORGIOU, G., TELOR, E. & PACKER, L. Z. Naturforsch 322: 110–117, 1977.Google Scholar
  27. 27.
    RAO, K.K. & HALL, D.O. Photosynthesis in Relation to Model Systems 3 (M. BARBER, ed.), Elseivier, Amsterdam, 1979, p. 299–329.Google Scholar
  28. 28.
    PRADET, A. Physiol. Veg. 5: 209–221, 1967.Google Scholar
  29. 29.
    LAMPRECHT, W. & TRAUTSCHOLD, I. Method of Enzymatic Analysis 4, Bergmeyer H.U. (Academic Press) 1974, pp. 2101–2109.Google Scholar
  30. 30.
    HOCHMAN, A. & CARMELI C., Arch. Biochem. Biophys. 179: 349–359, 1977CrossRefGoogle Scholar
  31. 31.
    BARBOTIN, J.M. & THOMASSET B. Biochimie, in press 1979.Google Scholar
  32. 32.
    COCQUEMPOT, M.F. THOMAS, D., CHAMPIGNY, M.L. & MOYSE, A., European J. Appl. Microbiol. Biotechnol. (in press), 1979.Google Scholar
  33. 33..
    COCQUEMPOT, M.F. Larreta Garde, V. & Thomas, D. Biochimie (in press) 1979.Google Scholar
  34. 34.
    IZAWA, S. & GOOD, N.E. Plant. Physiol. 41 544–552, 1966.CrossRefGoogle Scholar
  35. 35.
    SMILLIE, R.M., HENNINGSEN, K.W., NIELSEN, N.C. & VONWETTSTEIN, D. Carlsberg Res. Commun. 41: 27–56, 1976.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • V. Larreta Garde
    • 1
  • M. F. Cocquempot
    • 1
  • J. N. Barbotin
    • 1
  • B. Thomasset
    • 1
  • D. Thomas
    • 1
  1. 1.Laboratorie de Technologie Enzymatique, E.R.A. N° 338 du CNRSUniversite de Technologie de CompeigneCompiegneFrance

Personalised recommendations