Rheology pp 171-175 | Cite as

Dynamic Mechanical Properties of Thermoplastic Urethane Elastomers by Thermally Stimulated Creep

  • Talal El Sayed
  • Daniel Chatain
  • Colette Lacabanne


In the chemistry of urethanes, major emphasis in recent years, has been placed upon efforts to develop aliphatic isocyanates to impart light stability, and improved stability toward hydrolysis (1). The first commercial aliphatic diisocyanate used was 1,6 hexamethylene diisocyanate (HDI). A series of elastomers was prepared in the melt from polyester diol (ES) -Mψ = 2,000-, from HDI and from 1,4 butane diol (BDO) for mole ratio of ES/HDI/BDO: 1/1/0, 1/2/1, 1/3/0, 1/4/3 and 1/5/4 (2). The dynamic mechanical properties of these thermoplastic urethane elastomers were investigated over the temperature range -200°C to 100°C using the Thermally Stimulated Creep (TSCr)technique (3)-. It is the purpose of this paper to investigate the molecular relaxation mechanisms of thermoplastic urethane elastomers by studying the effect of microphase segregation and intermolecular bonding on their dynamic mechanical properties.


Hard Segment Soft Segment Dynamic Mechanical Property Hard Segment Content Hexamethylene Diisocyanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.C. Frisch and S.L. Reegen, “Advances in Urethane Science and Technology”, Vol 2, Technomic Publishing, West port (1973)Google Scholar
  2. 2.
    T. El Sayed, Thesis, Toulouse (1979)Google Scholar
  3. 3.
    J.C. Monpagens, D.G. Chatain, C. Lacabanne and P. Gautier, J. Polym. Sci. Phys. Ed. 15, 7.67 ( 1977 ) J.C. Monpagens, Thesis, Toulouse (1977)Google Scholar
  4. 4.
    D.S. Huh and S.L. Cooper, Polym. Eng. Sci. 11 (5), 369 (1971)CrossRefGoogle Scholar
  5. 5.
    H.N. Hg, A.E. Allegrezza, R.W. Seymour and S.L. Cooper, Polymer 14, 255 (1973)CrossRefGoogle Scholar
  6. 6.
    P. Hedvig, “Dielectric Spectroscopy of Polymers”, Adam Hilger Bristol, p. 243 (1977)Google Scholar
  7. 7.
    C.G. Seefried Jr., J.V. Koleske and F.E. Critchfield, J. Appl. Polym. Sci. 19, 2493 (1975)CrossRefGoogle Scholar
  8. 8.
    N.S. Schneider, C.S. Kaik Sung, R.W. Matton and J.L. Illinger, Macromolecules 8(1), 62 (1975)ADSCrossRefGoogle Scholar
  9. 9.
    Yu.S. Lipatov, “Advances in Urethane Sciences and Technology”, Vol. 4, K.C. Frisch and S.L. Reegen Ed., Technomic Publishing, Westport, p.1 (1976)Google Scholar
  10. 10.
    J.L. Illinger, “Polymer Alloys”, D. Klempner and K.C. Frisch Ed., Plenum Press, New York, p. 313 (1977)Google Scholar
  11. 11.
    J. Ferguson and N. Ahmad, European Polymer J. 33, 859 (1977)CrossRefGoogle Scholar
  12. 12.
    R.R. Aitken and G.M.F. Jeffs, Polymer 18, 197 (1977)CrossRefGoogle Scholar
  13. 13.
    G.A. Senich and W.J. Macknight, Polymer Prepr. 19 (1), 11 (1978)Google Scholar
  14. 14.
    S. L. Cooper, J.C. West and R.W. Seymour, “Encyclopedia of Polymer Science and Technology”, Suppl. n°1, John Wiley and Sons, p. 521 (1976)Google Scholar
  15. 15.
    R.W. Seymour and S.L. Cooper, Macromolecules, 6, 48 (1973)ADSCrossRefGoogle Scholar
  16. 16.
    C.H.M. Jacques, “Polymer Alloys”, D. Klempner and K.C. Frisch Ed. Plenum Press, New York, p. 1 (1977)Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Talal El Sayed
    • 1
  • Daniel Chatain
    • 1
  • Colette Lacabanne
    • 1
  1. 1.Laboratoire de Physique des SolidesUniversité Paul SabatierToulouse CédexFrance

Personalised recommendations