Rheology pp 149-155 | Cite as

Melt Deformation during Parison Formation and Inflation in Extrusion Blow Molding

  • Musa R. Kamal
  • Dilhan Kalyon
  • Victor Tan


A significant part of the work associated with the analysis of the extrusion blow molding process has concentrated on the development of techniques to characterize parison swell and draw-down behaviour (4–5) and on establishing empirical correlations between operating variables and parison behaviour (6–8). Other studies have attempted to relate parison behaviour to material properties (9–16). On the other hand, a limited amount of work has been reported on parison inflation, involving mainly simplified methods to predict the distribution of the bottle thickness in simple mold geometry (17–19).


High Density Polyethylene Thickness Distribution Hoop Stress Extension Ratio High Speed Cinematography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Bird, C. Armstrong and O. Hassager, “Dynamics of Polymeric Liquids”, John Wiley, New York (1977)Google Scholar
  2. 2.
    R. Mendelson, F. Finger and E. Bagley, J. Polym. Sci., 35, 178 (1971)Google Scholar
  3. 3.
    M. Harig, S. Lidarikis and J. Vlachopoulos, Trans. Soc. Rheology, 16, 670 (1972)Google Scholar
  4. 4.
    N. Sheptak and C. Beyer, SPE Journal, 190 (1965)Google Scholar
  5. 5.
    K. Chao and W. Wu, SPE Journal, 190 (1965)Google Scholar
  6. 6.
    N. Wilson, M. Bentley and B. Morgan, SPE Journal, 26, 34 (1970)Google Scholar
  7. 7.
    K. Blower and N. Standish, Polym. Eng. Sci., 13, 3, 222 (1973)CrossRefGoogle Scholar
  8. 8.
    E. Henze and W. Wu, Polym. Eng. Sci., 13, 2, 153 (1973)CrossRefGoogle Scholar
  9. 9.
    F. Cogswell, Plastics and Polymers, 391 (1970)Google Scholar
  10. 10.
    G. Ajroldi, Polym. Eng. Sci., 18, 10, 742 (1978)CrossRefGoogle Scholar
  11. 11.
    T. Clifford, SPE Journal, 25, 32 (1969)Google Scholar
  12. 12.
    J. Miller, Trans. Soc. Rheology, 19, 3, 341 (1975)ADSCrossRefGoogle Scholar
  13. 13.
    J. Schaul, M. Hannon and K.F. Wissburn, Trans. Soc. Rheology, 19, 3, 351 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    F.N. Cogswell, P. Webb, J.C. Weeks, S. Maskell and P. Rice, Plastics and Polymers, 340 (1971)Google Scholar
  15. 15.
    R.A. Worth and J. Parnaby, Trans Instn Chem. Engrs, 52, 368 (1974)Google Scholar
  16. 16.
    R. Pritchatt, J. Parnaby and R. Worth, Plastics and Polymers, 55 (1975)Google Scholar
  17. 17.
    A. Dutta, SPE Technical Papers, Vol. 25, 913 (1979)Google Scholar
  18. 18.
    H. Fukase, A. Iwaaki and T. Kunio, SPE Technical Papers, Vol. 24, 650 (1978)Google Scholar
  19. 19.
    C.J.S. Petrie, “Polymer Rheology and Plastics Processing”, Proceedings of Conference, edited by P.L. Clegg et al., Plastics and Rubber Inst., London, pp. 307–318, 1975Google Scholar
  20. 20.
    D. Kalyon, V. Tan and M.R. Kamal, SPE Technical Papers, Vol. 25, 991 (1979)Google Scholar
  21. 21.
    D.J. Plazek, N. Raghupathi, R.F. Kratz and W.R. Miller, Jr., J. Appl. Polym. Sci., Vol. 24, 1309 (1979)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Musa R. Kamal
    • 1
  • Dilhan Kalyon
    • 1
  • Victor Tan
    • 1
  1. 1.Chemical Engineering DepartmentMcGill UniversityMontrealCanada

Personalised recommendations